Main Article Content

Abstract

Liquid waste is a major problem in the textile industry environment that has the most widespread influence because physical and aquatic characteristics can have a negative impact on waters. Most of the liquid waste produced by batik comes from the dyeing process and environmental pollution. If it is disposed of directly into the environment without prior processing, the environment has a limited ability to degrade dyestuffs. One alternative method to remove the dye in water contaminated with methyl orange is biosorption using a cheap and easily available biosorbent, such as a langsat shell. This study used a batch method with variations in pH, solution concentration, particle size, stirring speed, and contact time. The results of each variation carried out obtained the optimum conditions for the absorption of Methyl Orange, namely at: pH 4, concentration 150 mg/L, and particle size 150 μm. The adsorption isotherm study was carried out, the Langmuir equation yielded a regression coefficient value that was close to one (R2 = 0.9964) so that it could be said to be better with a maximum absorption capacity of 3.1164 mg/g

Keywords

Batch Method Biosorption Langsat Shell Methyl Orange

Article Details

How to Cite
1.
Kurniawati D, Lestari I, Tarmizi F, Pernadi NL, Iqbal A. Biosorption of Methylene Orange Dye using Langsat Shell by Batch Method. EKSAKTA [Internet]. 2023Sep.30 [cited 2024Nov.5];23(03):305-14. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/419

References

  1. R. Mohadi, Normah, E. S. Fitri, and N. R. Palapa. (2022).Unique Adsorption Properties of Cationic Dyes Malachite Green and Rhodamine-B on Longan (Dimocarpus longan) Peel, Sci. Technol. Indones., vol. 7, no. 1, pp. 115–125.
  2. B. Isik, F. Cakar, and O. Cankurtaran. (2023). Valorization of Urtica dioica roots as a highly-effective and eco-friendly biosorbent for adsorptive removal of hazardous textile dyes. Mater. Sci. Eng. B, vol. 293, p. 116451.
  3. E. Nasra, R. Sari, S. B. Etika, D. Kurniawati, and T. K. Sari. (2020). Optimization of Phenol Absorption Using Banana Peel (Musa balbisiana Colla) as Biosorbent, vol. 10, no. ICoBioSE 2019, pp. 238–243.
  4. K. Prasad, S. Veluru, S. Himaja Pamu, V. Rao Poiba, H. Talib Hamzah, and M. Seereeddi. (2023). Potential efficacy of a fruit waste - Manila tamarind seed powder for the adsorption of hazardous dyes from aqueous solution: Batch studies, Mater. Today Proc., vol. 80, pp. 1334–1340.
  5. R. Zein, J. Satrio Purnomo, P. Ramadhani, Safni, M. F. Alif, and C. N. Putri. (2023). Enhancing sorption capacity of methylene blue dye using the solid waste of lemongrass biosorbent by modification method. Arab. J. Chem., vol. 16, no. 2, p. 104480.
  6. J. G. da S. Andrade, C. E. Porto, W. M. Moreira, V. R. Batistela, and M. H. N. O. Scaliante, (2023). Production of hydrochars from Pinus caribaea for biosorption of methylene blue and tartrazine yellow dyes, Clean. Chem. Eng., vol. 5, no. August 2022, p. 100092.
  7. M. Catanho, G. R. P. Malpass, and A. de J. Motheo. (2006).Avaliação dos tratamentos eletroquímico e fotoeletroquímico na degradação de corantes têxteis, Quim. Nova, vol. 29, no. 5, pp. 983–989.
  8. A. El Amri et al. (2023). Investigation of Typha Latifolia (TL) as potential biosorbent for removal of the methyl orange anionic dye in the aqueous solution. Kinetic and DFT approaches, J. Mol. Struct., vol. 1272, p. 134098.
  9. Y. Raji et al. (2022). Efficient Adsorption of Methyl Orange on Nanoporous Carbon from Agricultural Wastes: Characterization, Kinetics, Thermodynamics, Regeneration and Adsorption Mechanism, J. Compos. Sci., vol. 6, no. 12.
  10. F. Tarmizi and D. Kurniawati. (2020). The Use of Langsat Skin ( Lansium domesticum ) in the Biosorption of Methyl Orange, Int. J. Sci. Res. Eng. Dev., vol. 3, no. 3, pp. 624–628.
  11. E. Widjajanti, R. Tutik, and M. P. Utomo. (2011).Pola Adsorpsi Zeolit Terhadap Pewarna Azo Metil Merah dan Metil Jingga, Pros. Semin. Nas. Penelitian, Pendidik. dan Penerapan MIPA, Fak. MIPA, Univ. Negeri Yogyakarta, pp. 115–122.
  12. F. I. Fajarwati, N. Ika Yandini, M. Anugrahwati, and A. Setyawati. (2020). Adsorption Study of Methylene Blue and Methyl Orange Using Green Shell (Perna Viridis), EKSAKTA J. Sci. Data Anal., vol. 1, no. 1, pp. 92–97.
  13. P. T. Huynh. (2023). Methylene Orange and Methyl Blue Adsorption Behavior on Pine Leaves Biomass ( Pinus kesiya ), Res. Sq., pp. 1–20.
  14. D. Ramutshatsha-Makhwedzha, A. Mavhungu, M. L. Moropeng, and R. Mbaya. (2022). Activated carbon derived from waste orange and lemon peels for the adsorption of methyl orange and methylene blue dyes from wastewater, Heliyon, vol. 8, no. 8, p. e09930.
  15. S. S. Shah, T. Sharma, B. A. Dar, and R. K. Bamezai. (2021). Adsorptive removal of methyl orange dye from aqueous solution using populous leaves: Insights from kinetics, thermodynamics and computational studies, Environ. Chem. Ecotoxicol., vol. 3, pp. 172–181.
  16. M. R. Shahab et al. (2023). Adsorption of methyl orange and chromium (VI) using Momordica charantia L. leaves: a dual functional material for environmental remediation, J. Iran. Chem. Soc., vol. 20, no. 3, pp. 577–590.
  17. D. Kurniawati et al. (2015). Biosorption of Pb (II) from Aqueous Solutions Using Column Method by Lengkeng ( Euphoria logan lour ) Seed and Shell,” J. Chem. Pharm. Res., vol. 7, no. 12, pp. 872–877.
  18. D. Yollanda, E. Nasra, D. K. I. Dewata, and U. K. Nizar. (2019). Pengaruh Ion Cu2+, Zn2+, Cd2+ dan Cr3+ terhadap Penyerapan Logam Pb2+ Menggunakan Kulit Pisang Kepok (Musa Paradisiaca L), Menara Ilmu, vol. XIII, no. 2, pp. 171–177.
  19. D. Kurniawati, Bahrizal, T. K. Sari, F. Adella, and S. Sy. (2021). Effect of Contact Time Adsorption of Rhodamine B, Methyl Orange and Methylene Blue Colours on Langsat Shell with Batch Methods, J. Phys. Conf. Ser., vol. 1788, no. 1.
  20. R. Zein, Z. Chaidir, Z. Zilfa, S. Fauzia, and P. Ramadhani. (2022). Isotherm and Kinetic Studies on the Adsorption Behavior of Metanil Yellow Dyes onto Modified Shrimp Shell-Polyethylenimine (SS-PEI), J. Kim. Val., vol. 8, no. 1, pp. 10–22.
  21. F. Adella and D. Kurniawati. (2020). Effect of Particle Size and Stirring Speed on Rhodamine B Absorption Using Langsat Shell ( Lansium domesticum ) as Biosorbent Abstract , Int. J. Sci. Res. Eng. Dev., vol. 3, no. 3, pp. 710–713.
  22. D. K. M Yogi Yunanda. (2023). Effect of Adsorbent Dosage on Copper Ion Adsorption Using Activated Carbon of Langsat Shell (Lansium domesticum Corr) with Column Method, Indones. J. Chem. Sci. Technol., vol. 06, no. 01, pp. 01–06.
  23. R. El Amri, R. Elkacmi, and O. Boudouch. (2023). Removal of Methyl Orange from Water Using Microalgae: Effect of Operating Parameters, Equilibrium, Kinetic and Thermodynamic Studies, Chem. Africa.
  24. M. T. Amin, A. A. Alazba, and M. Shafiq. (2017). Batch and fixed-bed column studies for the biosorption of Cu(II) and Pb(II) by raw and treated date palm leaves and orange peel. Glob. Nest J., vol. 19, no. 3, pp. 464–478.
  25. N. Nadia Rudi, N. Mohd Apandi, and M. Suliza. (2022). Chemical Treatment of Banana Blossom Peels Adsorbent as New Approach for Manganese Removal: Isotherm and Kinetic Studies. Res. Sq., vol. 1, no. 4, pp. 1–33.
  26. Y. Wulandari, L. Kurniasari, and I. Riwayati. (2014). Adsorpsi Logam Timbal dalam Larutan Menggunakan Kulit Ketela Rambat (Ipomoea batatas L), Pros. SNST, pp. 75–80.
  27. A. Thulasisingh, S. Muthulingam, M. Kumar, N. Rajasekar, S. Mohanraj, and C. G. Malar, (2023). Biosorption of methylene blue dye using a novel chitosan pectinase blend, Environ. Sci. Pollut. Res., vol. 30, no. 17, pp. 48948–48961.
  28. I. D. Puja, Desy Kurniawati, Edi Nasra, . Bahrizal, Umar Kalmar Nizar. (2019). Effect of Biosorbent Particle Size on Biosorption of Lead (II) from Lengkeng Seeds and Shell (Euphoria logan Lour), pp. 244–248.
  29. J. Kesumaningrum, N. Prasetya, and A. Suseno. (2011). Jurnal Kimia Sains dan Aplikasi Adsorpsi Fenol dengan TiO2/Zeolit Artificial Berbahan Dasar Sekam, J. Kim. Sains dan Apl., vol. 14, no. 1, pp. 26–31.
  30. N. Gogoi, P. Samanta, and P. Dahutia. (2023). Agro-Wastes as Low-Cost Biosorbent for Dyes Removal from Wastewater,” in Agriculture Waste Management and Bioresource,pp. 149–172.
  31. A. A. Hambisa, M. B. Regasa, H. G. Ejigu, and C. B. Senbeto. (2023). Adsorption studies of methyl orange dye removal from aqueous solution using Anchote peel-based agricultural waste adsorbent. Appl. Water Sci., vol. 13, no. 1, pp. 1–11.
  32. A. Hadadi, A. Imessaoudene, J.-C. Bollinger, S. Cheikh, A. Manseri, and L. Mouni. (2023). Dual Valorization of Potato Peel (Solanum tuberosum) as a Versatile and Sustainable Agricultural Waste in Both Bioflocculation of Eriochrome Black T and Biosorption of Methylene Blue, J. Polym. Environ.
  33. M. Diehl, L. F. O. Silva, C. Schnorr, M. S. Netto, F. S. Bruckmann, and G. L. Dotto. (2023). Cassava bagasse as an alternative biosorbent to uptake methylene blue environmental pollutant from water, Environ. Sci. Pollut. Res., vol. 30, no. 18, pp. 51920–51931.
  34. A. H. Putri. (2021).Biosorption of Mal Malachite Green Dye Using Langsat Peel ( Lansium domesticum ) Biosorbent, vol. 4, no. 2, pp. 1155–1158.
  35. C. Zaharia and D. Suteu. (2023). Empirical Modeling by Active Central Composite Rotatable Design : Orange 16 Dye Biosorption onto Biosorbents Based on Residual Bacterial Lactobacillus sp . Biomass, Separations, vol. 10, no. 279, pp. 1–13.
  36. A. Amari et al. (2023). Remediation of Methyl Red Dye from Aqueous Solutions by Using Biosorbents Developed from Floral Waste, Adsorpt. Sci. Technol., vol. 2023.
  37. X. Yang et al. (2023).Alkaline ball-milled peanut-hull biosorbent effectively removes aqueous organic dyes, Chemosphere, vol. 313, p. 137410.
  38. A. Chergui, M. Z. Bakhti, A. Chahboub, S. Haddoum, A. Selatnia, and G. A. Junter. (2007). Simultaneous biosorption of Cu2+, Zn2+ and Cr6+ from aqueous solution by Streptomyces rimosus biomass, Desalination, vol. 206, no. 1–3, pp. 179–184.
  39. A. C. Enache, P. Samoila, C. Cojocaru, R. Apolzan, G. Predeanu, and V. Harabagiu. (2023). An Eco-Friendly Modification of a Walnut Shell Biosorbent for Increased Efficiency in Wastewater Treatment, Sustain., vol. 15, no. 3.
  40. J. Shu et al. (2017). Copper loaded on activated carbon as an efficient adsorbent for removal of methylene blue, RSC Adv., vol. 7, no. 24, pp. 14395–14405.
  41. R. E. Tataru-Farmus, R. Cimpoesu, I. Nica, and D. Suteu. (2023). Biosorbent Based on Poly(vinyl alcohol)–Tricarboxi-Cellulose Designed to Retain Organic Dyes from Aqueous Media, Polymers (Basel)., vol. 15, no. 3.
  42. M. Dhelipan, A. Arunchander, A. K. Sahu, and D. Kalpana. (2017). Activated carbon from orange peels as supercapacitor electrode and catalyst support for oxygen reduction reaction in proton exchange membrane fuel cell, J. Saudi Chem. Soc., vol. 21, no. 4, pp. 487–494.
  43. B. T. Gebeyehu. (2023).Efficient Removal of Methylene Blue Dye from Aqueous Solution Using a New Biosorbent Derived from Enset ( Ensete Ventricosum ), pp. 1–25.
  44. H. S. Kusuma et al. (2023). Biosorption of Methylene blue using clove leaves waste modified with sodium hydroxide, Results Chem., vol. 5, no. January, p. 100778.
  45. L. Medina-Zazueta et al. (2023). Development of Sustainable Magnetic Biosorbent Using Aqueous Leaf Extract of Vallesia glabra for Methylene Blue Removal from Wastewater, Sustain., vol. 15, no. 5.

Most read articles by the same author(s)