Main Article Content

Abstract

The increasing pollution of toxic heavy metals in the environment is an important issue worldwide. Heavy metal ions such as mercury have attracted special attention because of their high toxicity and long half-life which increase the potential to accumulate in the food chain and cause serious damage to the environment. The potential of an adsorbent durian (Durio zibethinus) seed immobilized alginate bead was carried out and used for the adsorption of Mercury in an aqueous solution. Adsorbents were characterized by FTIR, SEM, and XRF. FTIR analysis shows the functional groups of alcohol, amine, and carboxylic acid. Scanning Electron Microscopy shows that the surface morphology of durian seed powder of granules and durian seed immobilized in Ca-alginate of like as tissue eggs in an egg box shape. XRF analysis durian seed immobilized showed that Hg(II) ion adsorbed as much as 37%. The adsorption parameter of Hg(II) ion are pH at 6 with an adsorption capacity was 1.553 mg/g, contact time at 150 minutes with adsorption capacity was 2.880 mg/g, mass 0.1 g with adsorption capacity of 2.274 mg/g, and concentration 250 mg/g with adsorption capacity of 62.067 mg/g.

Keywords

Adsorption, mercury, immobilized, alginate, and durian (Durio zibethinus) seed

Article Details

How to Cite
1.
Lestari I, Putri SDEP, Rahayu MA, Gusti DR. The Adsorption of Mercury from Aqueous Solution on Durian (Durio zibethinus) Seed Immobilized Alginate. EKSAKTA [Internet]. 2022Mar.30 [cited 2024Nov.21];23(01):30-41. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/305

References

  1. S. Wang, Y. Liu, Q. Fan, A. Zhou, L. Fan, and Y. Mu. (2016). Removal of Hg(II) from aqueous solution using sodium humate as heavy metal capturing agent. Water Sci. Technol., vol. 74, no. 12, pp. 2946–2957, doi: 10.2166/wst.2016.466.
  2. H. C. Vu, A. D. Dwivedi, T. T. Le, S. H. Seo, E. J. Kim, and Y. S. Chang. (2017). Magnetite graphene oxide encapsulated in alginate beads for enhanced adsorption of Cr(VI) and As(V) from aqueous solutions: Role of crosslinking metal cations in pH control. Chem. Eng. J., doi: 10.1016/j.cej.2016.08.058.
  3. N. Dave, M. Y. Chan, P. J. J. Huang, B. D. Smith, and J. Liu. (2010). Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water. J. Am. Chem. Soc., vol. 132, no. 36, pp. 12668–12673, doi: 10.1021/ja106098j.
  4. J. G. Yu et al. (2016). Removal of mercury by adsorption: a review. Environ. Sci. Pollut. Res., vol. 23, no. 6, pp. 5056–5076, doi: 10.1007/s11356-015-5880-x.
  5. F. S. Awad, K. M. AbouZied, W. M. Abou El-Maaty, A. M. El-Wakil, and M. Samy El-Shall. (2020). Effective removal of mercury(II) from aqueous solutions by chemically modified graphene oxide nanosheets. Arab. J. Chem., vol. 13, no. 1, pp. 2659–2670, doi: 10.1016/j.arabjc.2018.06.018.
  6. X. F. Xiao, N. Yang, Z. L. Wang, and Y. Q. Huang. (2019). Determination of trace mercury(II) in wastewater using on-line flow injection spectrophotometry coupled with supported liquid membrane enrichment. Anal. Methods, vol. 8, no. 3, pp. 582–586, doi: 10.1039/c5ay02725j.
  7. Y. Zhang et al. (2019). Appraisal of Cu(ii) adsorption by graphene oxide and its modelling: Via artificial neural network. RSC Adv., vol. 9, no. 52, pp. 30240–30248, doi: 10.1039/c9ra06079k.
  8. L. Zhao, C. Li, X. Zhang, G. Zeng, J. Zhang, and Y. Xie. (2020). A review on oxidation of elemental mercury from coal-fired flue gas with selective catalytic reduction catalysts. Catal. Sci. Technol., vol. 5, no. 7, pp. 3459–3472, doi: 10.1039/c5cy00219b.
  9. A. Oehmen, D. Vergel, J. Fradinho, M. A. M. Reis, J. G. Crespo, and S. Velizarov. (2019). Mercury removal from water streams through the ion exchange membrane bioreactor concept. J. Hazard. Mater., vol. 264, pp. 65–70, doi: 10.1016/j.jhazmat.2013.10.067.
  10. C. Tunsu and B. Wickman. (2018). Effective removal of mercury from aqueous streams via electrochemical alloy formation on platinum. Nat. Commun., vol. 9, no. 1, pp. 1–9, doi: 10.1038/s41467-018-07300-z.
  11. K. C. Khulbe and T. Matsuura. (2018). Removal of heavy metals and pollutants by membrane adsorption techniques. Appl. Water Sci., vol. 8, no. 1, doi: 10.1007/s13201-018-0661-6.
  12. G. Z. Kyzas, E. A. Deliyanni, and K. A. Matis. (2020). Graphene oxide and its application as an adsorbent for wastewater treatment. J. Chem. Technol. Biotechnol., vol. 89, no. 2, pp. 196–205, doi: 10.1002/jctb.4220.
  13. F. Fu and Q. Wang. (2019). Removal of heavy metal ions from wastewaters: A review. J. Environ. Manage., vol. 92, no. 3, pp. 407–418, doi: 10.1016/j.jenvman.2010.11.011.
  14. B. Guezzen and M. Amine Didi. (2018). Removal and Analysis of Mercury (II) From Aqueous Solution by Ionic Liquids. J. Anal. Bioanal. Tech., vol. 07, no. 03, doi: 10.4172/2155-9872.1000317.
  15. F. Di Natale, A. Erto, A. Lancia, and D. Musmarra. (2019). Mercury adsorption on granular activated carbon in aqueous solutions containing nitrates and chlorides. J. Hazard. Mater., vol. 192, no. 3, pp. 1842–1850, doi: 10.1016/j.jhazmat.2011.07.021.
  16. Y. S. Shen, S. L. Wang, Y. M. Tzou, Y. Y. Yan, and W. H. Kuan. (2019). Removal of hexavalent Cr by coconut coir and derived chars : The effect of surface functionality. Bioresour. Technol., doi: 10.1016/j.biortech.2011.10.096.
  17. S. Kushwaha, S. Sodaye, and P. Padmaja Sudhakar. (2018). Adsorption of Hg(II) from aqueous solution onto Borassus Flabeliffer: Equilibrium and kinetic studies. Desalin. Water Treat., vol. 12, no. 1–3, pp. 100–107, doi: 10.5004/dwt.2009.946.
  18. S. L. R. K. Kanamarlapudi, V. K. Chintalpudi, and S. Muddada. (2018). Application of Biosorption for Removal of Heavy Metals from Wastewater. Biosorption, doi: 10.5772/intechopen.77315.
  19. I. Lestari. (2019). Biosorption of Zn (II) Metal Ion by Ca-Alginate Immobilized Durian (Durio Zibethinus) Seed. J. Chem. Nat. Resour., vol. 1, no. 2, pp. 60–68, doi: 10.32734/jcnar.v1i2.1254.
  20. M. Y. Arica, G. Bayramoǧlu, M. Yilmaz, S. Bektaş, and Ö. Genç. (2018). Biosorption of Hg2+, Cd2+, and Zn2+ by Ca-alginate and immobilized wood-rotting fungus Funalia trogii. J. Hazard. Mater., vol. 109, no. 1–3, pp. 191–199, doi: 10.1016/j.jhazmat.2004.03.017.
  21. S. Babel and T. A. Kurniawan. (2018). Cr(VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere, doi: 10.1016/j.chemosphere.2003.10.001.
  22. Y. L. Lai, M. Thirumavalavan, and J. F. Lee. (2020). Effective adsorption of heavy metal ions (Cu2+, Pb2+, Zn2+) from aqueous solution by immobilization of adsorbents on Ca-alginate beads. Toxicol. Environ. Chem., vol. 92, no. 4, pp. 697–705, doi: 10.1080/02772240903057382.
  23. F. J. Alguacil and F. A. López. (2020). Adsorption Processing for the Removal of Toxic Hg(II) from Liquid Effluents: Advances in the 2019 Year. Metals (Basel)., vol. 10, no. 3, p. 412, doi: 10.3390/met10030412.
  24. D. Y. Lestari and E. W. Laksono. (2020). Kinetics and thermodynamics studies of copper(II) adsorption onto activated carbon prepared from salacca zalacca peel. Molekul, vol. 15, no. 2, pp. 63–72, doi: 10.20884/1.jm.2020.15.2.530.
  25. A. Petrovič and M. Simonič. (2019). Removal of heavy metal ions from drinking water by alginate-immobilised Chlorella sorokiniana. Int. J. Environ. Sci. Technol., vol. 13, no. 7, pp. 1761–1780, doi: 10.1007/s13762-016-1015-2.
  26. P. S. Ghosal and A. K. Gupta. (2018). Determination of thermodynamic parameters from Langmuir isotherm constant-revisited. J. Mol. Liq., vol. 225, pp. 137–146, doi: 10.1016/j.molliq.2016.11.058.
  27. H. P. Chao and C. C. Chang. (2020). Adsorption of copper(II), cadmium(II), nickel(II) and lead(II) from aqueous solution using biosorbents. Adsorption, vol. 18, no. 5–6, pp. 395–401, doi: 10.1007/s10450-012-9418-y.