Main Article Content


Metal ion such as Cr(VI) is one toxic heave metal at the trace level, thus it is necessary to remove metal ion Cr(VI) ion environmental. The absorption of Cr(VI) ions was carried out using a Fe3O4 magnetite activated carbon composite. Activated carbon prepare from palm shells (Elaeis guinensis Jack) was composite with magnetite Fe3O4 by co-precipitation method. Magnetite Fe3O4-activated carbon composite is characterized by SEM, VSM and XRD. SEM image show that  Fe3O4 a deposit on the surface of activated carbon. The degree of magnetization of Fe3O4 with VSM obtained 20.99 emu/g. The pattern of XRD diffractogram show that diffraction peak at 2θ which was 6.5495o; 30.1146o; 35.3581o; 43.063o; 57.1369o; 62.5918o. The spectra of FTIR show that  functional groups exist in composites such as carboxyl, carbonyl and hydroxyl groups.  Adsorption of  Cr(VI) ion occurs at pH 5, contact time is 30 minutes and a maximum concentration of 200 mg/L Cr(VI) with a maximum adsorption capacity was 43.4 mg/g.


Magnetite activated carbon Cr(VI) adsorption toxic metal

Article Details

How to Cite
Lestari I, Ramadhanty Y, Marlinda L, Ngatijo N. Preparation and Characterization of Magnetite Fe3O4-Activated Carbon Composite as Adsorbent Cr(VI) Ion . EKSAKTA [Internet]. 2021Dec.30 [cited 2023Dec.2];22(4):238-47. Available from:


  1. F. Gorzin and M. M. Bahri Rasht Abadi. (2018). “Adsorption of Cr(VI) from aqueous solution by adsorbent prepared from paper mill sludge: Kinetics and thermodynamics studies,” Adsorpt. Sci. Technol., vol. 36, no. 1–2, pp. 149–169, doi: 10.1177/0263617416686976.
  2. A. Ariyani. (2020). “Pembuatan Komposit Magnet Oksida Besi- Karbon Aktif Sebagai Adsorben Cs dan Sr,” Inst. Pertan. Bogor, vol. Bogor, pp. 1–13.
  3. A. Kumar and H. M. Jena. (2017). “Adsorption of Cr(VI) from aqueous solution by prepared high surface area activated carbon from Fox nutshell by chemical activation with H3PO4,” J. Environ. Chem. Eng., vol. 5, no. 2, pp. 2032–2041, doi: 10.1016/j.jece.2017.03.035.
  4. H. Liu, F. Zhang, and Z. Peng. (2019). “Adsorption mechanism of Cr(VI) onto GO/PAMAMs composites,” Sci. Rep., vol. 9, no. 1, pp. 1–12, doi: 10.1038/s41598-019-40344-9.
  5. K. Mulani, S. Daniels, K. Rajdeo, S. Tambe, and N. Chavan. (2018). “Adsorption of Chromium(VI) from Aqueous Solutions by Coffee Polyphenol-Formaldehyde/Acetaldehyde Resins,” J. Polym., vol. 2013, pp. 1–11, doi: 10.1155/2013/798368.
  6. K. R. K. D. Sangandita and B. Utami. (2019). “Effectiveness of Rice Husk and Bagasse Fly Ash as Adsorbent of Cr Metal on Batch System,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 4, no. 2, p. 85, doi: 10.20961/jkpk.v4i2.29724.
  7. E. Susilowati and A. E. Lestari. (2019). “Preparation and Characterization of Chitosan-Avocado Seed Starch (KIT-PBA) Edible Film,” JKPK (Jurnal Kim. dan Pendidik. Kim., vol. 4, no. 3, p. 197, doi: 10.20961/jkpk.v4i3.29846.
  8. P. M. Thabede, N. D. Shooto, T. Xaba, and E. B. Naidoo. (2021). “Magnetite Functionalized Nigella Sativa Seeds for the Uptake of Chromium(VI) and Lead(II) Ions from Synthetic Wastewater,” Adsorpt. Sci. Technol., vol. 2021, no. Ii, doi: 10.1155/2021/6655227.
  9. D. Zhang, Y. Ma, H. Feng, and Y. Hao. (2018). “Adsorption of Cr(VI) from aqueous solution using carbon-microsilica composite adsorbent,” J. Chil. Chem. Soc., vol. 57, no. 1, pp. 964–968, doi: 10.4067/S0717-97072012000100002.
  10. J. Zhang, S. Lin, H. Meiling, S. Qing, and X. Liancu. (2020). “Adsorption Properties of Magnetic Magnetite,” Water, vol. 12, no. Vi, pp. 1–13.
  11. D. Darjito, D. Purwonugroho, and R. Ningsih. (2019). “The Adsorption of Cr ( VI ) Ions Using Chitosan-Alumina Adsorbent,” J. Pure App. Chem. Res, vol. 3, no. June, pp. 53–61.
  12. Ş. Parlayici and E. Pehlivan. (2019). “Comparative study of Cr(VI) removal by bio-waste adsorbents: equilibrium, kinetics, and thermodynamic,” Journal of Analytical Science and Technology, vol. 10, no. 1, doi: 10.1186/s40543-019-0175-3.
  13. Z. A. AL-Othman, R. Ali, and M. Naushad. (2020). “Hexavalent chromium removal from aqueous medium by activated carbon prepared from peanut shell: Adsorption kinetics, equilibrium and thermodynamic studies,” Chem. Eng. J., vol. 184, pp. 238–247, doi: 10.1016/j.cej.2012.01.048.
  14. P. Miretzky and A. F. Cirelli. (2020). “Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: A review,” J. Hazard. Mater., vol. 180, no. 1–3, pp. 1–19, doi: 10.1016/j.jhazmat.2010.04.060.
  15. L. Yang et al. (2020). “Promotion of plant growth and in situ degradation of phenol by an engineered Pseudomonas fluorescens strain in different contaminated environments,” Soil Biol. Biochem., vol. 43, no. 5, pp. 915–922, doi: 10.1016/j.soilbio.2011.01.001.
  16. S. Amornwutiroj, P. Manpetch, W. Singhapong, P. Srinophakun, and A. Jaroenworaluck. (2020). “Controllable synthesis of mesoporous magnetite/activated carbon composites as efficient adsorbents for hexavalent chromium removal,” J. Dispers. Sci. Technol., vol. 41, no. 10, pp. 1427–1444, doi: 10.1080/01932691.2019.1623690.
  17. L. Acosta, D. Galeano-Caro, O. E. Medina, F. B. Cortés, and C. A. Franco. (2021). “Nano-intermediate of magnetite nanoparticles supported on activated carbon from spent coffee grounds for treatment of wastewater from oil industry and energy production,” Processes, vol. 9, no. 1, pp. 1–21, doi: 10.3390/pr9010063.
  18. M. Rossier et al. (2020). “Energy-Efficient noble metal recovery by the use of acid-stable nanomagnets,” Ind. Eng. Chem. Res., vol. 49, no. 19, pp. 9355–9362, doi: 10.1021/ie101117c.
  19. E. Ghasemi, A. Heydari, and M. Sillanpää. (2017). “Superparamagnetic Fe3O4@EDTA nanoparticles as an efficient adsorbent for simultaneous removal of Ag(I), Hg(II), Mn(II), Zn(II), Pb(II) and Cd(II) from water and soil environmental samples,” Microchem. J., vol. 131, pp. 51–56, doi: 10.1016/j.microc.2016.11.011.
  20. X. Zhang et al. (2017). “Preparation and characterization of superparamagnetic Fe3O4/CNTs nanocomposites dual-drug carrier,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 32, no. 1, pp. 42–46, doi: 10.1007/s11595-017-1555-4.
  21. S. Nethaji, A. Sivasamy, and A. B. Mandal. (2013). “Preparation and characterization of corn cob activated carbon coated with nano-sized magnetite particles for the removal of Cr(VI),” Bioresour. Technol., vol. 134, pp. 94–100, doi: 10.1016/j.biortech.2013.02.012.
  22. I. Lestari, E. Kurniawan, D. R. Gusti, and Yusnelti. (2020). “Magnetite Fe3O4 activated carbon composite as adsorbent of rhodamine B dye,” in IOP Conference Series: Earth and Environmental Science, Vol. 483, No. 1, doi: 10.1088/1755-1315/483/1/012046.
  23. F. Mutongo, O. Kuipa, and P. K. Kuipa.(2019). “Removal of Cr(VI) from aqueous solutions using powder of potato peelings as a low cost sorbent,” Bioinorg. Chem. Appl., vol. 2014, doi: 10.1155/2014/973153.