Main Article Content

Abstract

Thymol is the active ingredient in plants from Thymus vulgaris (thymus). The calculations and molecular docking have been done computationally for the thymol and o-benzoyl thymol. This computational calculation aims to obtain a stable structure and electronic properties of thymol and o-benzoyl thymol. The computational analysis used DFT for geometry optimization in the gas phase using B3LYP functional and 3-211G(d) as the basis set. The optimized structure of thymol and o-benzoyl thymol is not planar. The functional benzoyl decreases the bond length, increases the bond angle, and turns the dihedral. The electronic properties, such as atomic charge and density of HOMO-LUMO, show the difference between the two molecules. The optimized structure of thymol and o-benzoyl thymol is used for molecular docking with the TYK2 enzyme (tyrosine kinase). In this research, thymol and o-benzoyl thymol can inhibit TYK2 enzyme with the bond affinity is about -5.909 kcal/mol and -7.456 kcal/mol, respectively, for thymol o-benzoyl thymol. The primary molecular interaction is hydrophobic.

Keywords

DFT, hydrophobic, o-benzoyl thymol, thymol, TYK2 enzyme

Article Details

How to Cite
1.
Maahury MF, Baharudin MDA, Zainul R, Khalid AK, Jakmola V, Rebezov M. Computational Calculation and Molecular Docking of Thymol and O-Benzoyl Thymol as Inhibitor TYK2 Enzyme. EKSAKTA [Internet]. 2023Sep.30 [cited 2024Nov.5];23(03):343-51. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/405

References

  1. Marchese et al. (2016). Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chemistry, vol. 210, pp. 402–414.
  2. K. Kachur and Z. Suntres. (2020).The antibacterial properties of phenolic isomers, carvacrol and thymol. Critical Reviews in Food Science and Nutrition, vol. 60, no. 18, pp. 3042–3053.
  3. Aljelehawy, Q. H. A., Mohammadi, S., Mohamadian, E., Raji Mal Allah, O., Mirzaei, A., & Ghahremanlou, M. (2023). Antimicrobial, anticancer, antidiabetic, antineurodegenerative, and antirheumatic activities of thymol: Clarification of mechanisms. Micro Nano Bio Aspects, 2(1), 1-7.
  4. S. M. de Morais et al. (2014).Thymol and eugenol derivatives as potential antileishmanial agents. Bioorganic & Medicinal Chemistry, vol. 22, no. 21, pp. 6250–6255.
  5. Yan, T. K., Asari, A., Salleh, S. A., & Azmi, W. A. (2021). Eugenol and thymol derivatives as antifeedant agents against red palm weevil, Rhynchophorus ferrugineus (Coleoptera: Dryophthoridae) larvae. Insects, 12(6), 551.
  6. Nunes, D. O., Vinturelle, R., Martins, F. J., Dos Santos, T. F., Valverde, A. L., Ribeiro, C. M. R., ... & Folly, E. (2021). Biotechnological potential of eugenol and thymol derivatives against Staphylococcus aureus from Bovine Mastitis. Current microbiology, 78, 1846-1855.
  7. A. Esmaeili and N. Mohabi. (2014).Experimental and Theoretical Determination of the Antioxidant Properties of Aromatic Monoterpenes of Thymol and 2,5,6-Trifluorothymol. International Journal of Food Properties, vol. 17, no. 5, pp. 1162–1168
  8. C. Bustos-Brito et al. (2016). Antidiarrheal Thymol Derivatives from Ageratina glabrata. Structure and Absolute Configuration of 10-Benzoyloxy-8,9-epoxy-6-hydroxythymol Isobutyrate. Molecules, vol. 21, no. 9, p. 1132.
  9. Dheer, D., Singh, D., Kumar, G., Karnatak, M., Chandra, S., Prakash Verma, V., & Shankar, R. (2019). Thymol chemistry: A medicinal toolbox. Current Bioactive Compounds, 15(5), 454-474.
  10. Blažíčková, M., Blaško, J., Kubinec, R., & Kozics, K. (2022). Newly Synthesized Thymol Derivative and Its Effect on Colorectal Cancer Cells. Molecules, 27(9), 2622.
  11. S. E. Hamidi, M. Khnifira, N. Barka, A. Benharref, H. Lafridi, and M. Abdennouri. (2019). A theoretical study of regio and stereoselectivity nitration of thymol and carvacrol using DFT approach, p. 10.
  12. Khnifira, M., ELhalil, A., Hammal, R., Baka, N., Sadiq, M., Benharref, A., ... & Abdennouri, M. (2019). A theoretical study of regio and stereoselectivity nitration of thymol and carvacrol using DFT approach. Moroccan Journal of Chemistry, 7(2), 7-2.
  13. Sin, K. R., Kim, C. J., Ko, S. G., Hwang, T. M., Han, Y. N., & Pak, Y. N. (2022). Inclusion of thymol into cucurbiturils: density functional theory approach with dispersion correction and natural bond orbital analysis. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 102(5-6), 533-542.
  14. S. Andrade-Ochoa. (2015). Quantitative structure-activity relationship of molecules constituent of different essential oils with antimycobacterial activity against Mycobacterium tuberculosis and Mycobacterium bovis, p. 12.
  15. J. Liang et al. (2013). Lead identification of novel and selective TYK2 inhibitors. European Journal of Medicinal Chemistry, vol. 67, pp. 175–187.
  16. N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and G. R. Hutchison. (2011). Open Babel: An open chemical toolbox. J Cheminform, vol. 3, no. 1, p. 33.
  17. Kuan, S. L., Bergamini, F. R., & Weil, T. (2018). Functional protein nanostructures: a chemical toolbox. Chemical Society Reviews, 47(24), 9069-9105.
  18. Ðorđević, L., Arcudi, F., Cacioppo, M., & Prato, M. (2022). A multifunctional chemical toolbox to engineer carbon dots for biomedical and energy applications. Nature Nanotechnology, 17(2), 112-130.
  19. Nogueira, M., Puig, L., & Torres, T. (2020). JAK inhibitors for treatment of psoriasis: focus on selective TYK2 inhibitors. Drugs, 80(4), 341-352.
  20. Gonzalez Lopez de Turiso, F., & Guckian, K. (2022). Selective TYK2 inhibitors as potential therapeutic agents: a patent review (2019–2021). Expert Opinion on Therapeutic Patents, 32(4), 365-379.
  21. M. F. Maahury and M. A. Martoprawiro. (2019). Computational Calculation Potency of lawsone and its derivatives as Active Material in dye-Sensitized Solar cell. Jurnal Kimia Mulawarman, vol. 17, no. 1, pp. 1–5
  22. Natal, C. M., Fernandes, M. J. G., Pinto, N. F., Pereira, R. B., Vieira, T. F., Rodrigues, A. R. O., ... & Gonçalves, M. S. T. (2021). New carvacrol and thymol derivatives as potential insecticides: Synthesis, biological activity, computational studies and nanoencapsulation. RSC advances, 11(54), 34024-34035.
  23. M. F. Maahury, Y. T. Male, and M. A. Martoprawiro. (2020). DFT Study of Leuco-Indigo and Indigo as Active Material in Dye-Sensitized Solar Cell. Molekul, vol. 15, no. 2, p. 114.
  24. Wang, Q., Song, H., Pan, S., Dong, N., Wang, X., & Sun, S. (2020). Initial pyrolysis mechanism and product formation of cellulose: An Experimental and Density functional theory (DFT) study. Scientific Reports, 10(1), 3626.
  25. Alam, M. M., Malebari, A. M., Syed, N., Neamatallah, T., Almalki, A. S., Elhenawy, A. A., ... & Alsharif, M. A. (2021). Design, synthesis and molecular docking studies of thymol based 1, 2, 3-triazole hybrids as thymidylate synthase inhibitors and apoptosis inducers against breast cancer cells. Bioorganic & Medicinal Chemistry, 38, 116136.
  26. Ali, M., Mansha, A., Asim, S., Zahid, M., Usman, M., & Ali, N. (2018). DFT Study for the Spectroscopic and Structural Analysis of p-Dimethylaminoazobenzene. Journal of Spectroscopy, 2018.
  27. Sk, M. F., & Kar, P. (2022). Finding inhibitors and deciphering inhibitor-induced conformational plasticity in the Janus kinase via multiscale simulations. SAR and QSAR in Environmental Research, 33(11), 833-859.

Most read articles by the same author(s)