Main Article Content

Abstract

This study was conducted to analyze the quantitative relationship between structure and net atomic charge modeling activity of 21 5-aminopyrazole derivatives as antioxidants. This study aims to determine the value of the net atomic charge and obtain the best HKSA equation. The method used in this study is the semi-empirical method of Austin Model 1 with geometry optimization. The selection of the best equation model is done by statistical analysis using the method of correlation analysis and multiple regression with Backward to the calculated descriptor data. From the results of the study, it was found that model 1 as the HKSA equation model was chosen with the equation Log IC50 = Log IC50 = 1.648+(0.914*qN1)-(3.662*qN2)-(1.99*qC3)+( 0.004*qC4)+(1.052* qC5 )+(1.226*qN6) where n = 6 ; R = 0.724 ; R2 = 0,524 ; SE = 0.1462 ; Sig = 0.068 ; PRESS = 0.2994. This study shows that atomic charge plays an important role in enhancing antioxidant activity.

Keywords

Free radicals, QSAR, antioxidant, AM1, statistic analysis

Article Details

How to Cite
1.
Toni NPD, Azra F. Modeling the Relationship of Net Atomic Charge with the Activity of 5-Aminopyrazole Derivative Compounds as Antioxidants with AM1 Method. EKSAKTA [Internet]. 2022Sep.26 [cited 2022Nov.29];23(04):242-5. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/334

References

  1. S. Di Meo and P. Venditti. (2020). Evolution of the Knowledge of Free Radicals and Other Oxidants. Oxidative Medicine and Cellular Longevity, vol. 2020. Hindawi Limited.
  2. Z. Rui and J. Liu. (2020), “Understanding of free radical scavengers used in highly durable proton exchange membranes,” Prog. Nat. Sci. Mater. Int., vol. 30, no. 6, pp. 732–742.
  3. H. Y. Leong, C. W. Ooi, C. L. Law, A. L. Julkifle, T. C. Ling, and P. L. Show. (2018). Application of liquid biphasic flotation for betacyanins extraction from peel and flesh of Hylocereus polyrhizus and antioxidant activity evaluation. Sep. Purif. Technol., vol. 201, pp. 156–166.
  4. V. Fasiku (Oluwaseun), C. A. Omolo, and T. Govender. (2019). Free radical-releasing systems for targeting biofilms. J. Control. Release, vol. 322, pp. 248–273.
  5. A. Fekri, E. M. Keshk, A. G. M. Khalil, and I. Taha.(2021). Synthesis of novel antioxidant and antitumor 5-aminopyrazole derivatives, 2D/3D QSAR, and molecular docking. Mol. Divers., no. 0123456789.
  6. A. V. Bobrova et al. (2021). Facile synthesis and sulfonylation of 4-aminopyrazoles. J. Mol. Struct., vol. 1230, pp. 1–7.
  7. Y. Kaddouri, F. Abrigach, E. B. Yousfi, M. El Kodadi, and R. Touzani. (2020). New thiazole, pyridine and pyrazole derivatives as antioxidant candidates: synthesis, DFT calculations and molecular docking study Heliyon, vol. 6, no. 1.
  8. V. L. M. Silva, J. Elguero, and A. M. S. Silva. (2018). Current progress on antioxidants incorporating the pyrazole core. Eur. J. Med. Chem., vol. 156, pp. 394–429.
  9. R. Abeynayake, S. Zhang, W. Yang, and L. Chen. (2021). Development of antioxidant peptides from brewers’ spent grain proteins. Lwt, vol. 158.
  10. S. Slavov and R. D. Beger. (2020). Quantitative structure–toxicity relationships in translational toxicology. Curr. Opin. Toxicol., vol. 23–24, pp. 46–49.
  11. R. S. of N. D. as A. A. Hadanu, L. Adelin, and I. W. Sutapa. (2018). QSAR Studies of Nitrobenzothiazole Derivatives as Antimalarial Agents,” Makara J. Sci., vol. 22, no. 1, pp. 35–41.
  12. R. J. Boyd. (2019). Theoretical and Computational Chemistry. Elsevier Inc. Canada.
  13. V. Moreira de Olivera, M. Machado Marinho, and E. Silva Marinho. (2019) Semi-Empirical Quantum Characterization of the Drug Selexipag: HOMO and LUMO and Reactivity Descriptors. Int. J. Recent Res. Rev., vol. 12, no. 2, pp. 15–20.
  14. V. Bastikar, A. Bastikar, and P. Gupta. (2022) Quantitative structure?activity relationship-based computational approaches. Elsevier Inc. India.
  15. S. P. W. Zahra. (2021). Simulasi Dinamika Molekul Pada Efektivitas Proses Ekstraksi Minyak Atsiri Dari Kulit Jeruk Manis Laporan Tugas Akhir. Universitas Pertamina. Indonesia.
  16. F. Suhud, S. Siswandono, and T. Budiati. (2017). Sintesis dan Uji Aktivitas Senyawa 1-Benzil-3-benzoilurea Tersubstitusi Bromo, Kloro, Floro dan Triflorometil pada posisi para sebagai Agen Antiproliferatif,” MPI (Media Pharm. Indones., vol. 1, no. 3, pp. 154–163.
  17. A. La Kilo, L. O. Aman, I. Sabihi, and J. La Kilo. (2019). Studi Potensi Pirazolin Tersubstitusi 1-N dari Thiosemicarbazone sebagai Agen Antiamuba melalui Uji In Silico. Indo. J. Chem. Res., vol. 7, no. 1, pp. 9–24.
  18. Y. T. Male and I. W. Sutapa. (2018). Xanthon Menggunakan Hubungan Kuantitatif,” vol. 11, no. 1.
  19. Muh. Taufiq. (2021). Analisis Hubungan Kuantitatif Struktur Dan Aktivitas Senyawa Turunan Aminoalkanol Xanton Sebagai Antikanker Menggunakan Metode Semiempiris Austin Model 1. UIN Alauddin Makassar. Indonesia.
  20. K. A. Rakhman, N. A. Limatahu, H. B. Karim, and M. I. Abdjan. (2019). Kajian Senyawa Turunan Benzopirazin sebagai Antimalaria Menggunakan Metode HKSA dan MLR,” EduChemia (Jurnal Kim. dan Pendidikan), vol. 4, no. 2, p. 112.
  21. K. B. Wiberg and P. R. Rablen. (2018). Atomic Charges. J. Org. Chem., vol. 83, no. 24, pp. 15463–15469.
  22. E. Yuanita, Sudirman, N. K. T. Dharmayani, M. Ulfa, and J. Syahri. (2020). Quantitative structure–activity relationship (QSAR) and molecular docking of xanthone derivatives as anti-tuberculosis agents,” J. Clin. Tuberc. Other Mycobact. Dis., vol. 21, p. 100203.
  23. N. R. Trindade et al. (2018). The newly synthesized pyrazole derivative 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole reduces blood pressure of spontaneously hypertensive rats via NO/cGMO pathway. Front. Physiol., vol. 9, 3–12.
  24. M. N. Kasmui and S. B. W. Kusuma. (2016). Analisis Hubungan Kuantitatif Struktur Dan Aktivitas Antimalaria Senyawa Turunan Quinoxalin,” vol. 39, no. 2, pp. 98–106.
  25. S. Boudergua, M. Alloui, S. Belaidi, M. M. Al Mogren, U. A. A. Ellatif Ibrahim, and M. Hochlaf. (2019). QSAR Modeling and Drug-Likeness Screening for Antioxidant Activity of Benzofuran Derivatives. J. Mol. Struct., vol. 1189, pp. 307–314.
  26. G. C. Soares Rodrigues, M. Dos Santos Maia, E. N. Muratov, L. Scotti, and M. T. Scotti,. (2020). Quantitative Structure-Activity Relationship Modeling and Docking of Monoterpenes with Insecticidal Activity against Reticulitermes chinensis Snyder and Drosophila melanogaster,” J. Agric. Food Chem., vol. 68, no. 16, pp. 4687–4698.