Main Article Content

Abstract

Test Effect of Chicken Manure Enriched with Shrimp Waste Dosage in order to determine the effect of chicken manure enriched with shrimp waste dose on growth and production of sweet corn plants. This experiment used a randomized block design (RAK) consisting of Factor U, namely 20 tons/ha of chicken manure with several levels of shrimp waste dose, namely 0 ml of shrimp waste/l, 3 ml of shrimp waste/l, 6 ml of shrimp waste/l, 9 ml of shrimp waste/l, 12 ml of shrimp waste/l and 6 ml/l of chitosan. Based on the experimental results, it can be concluded that the application of chicken manure enriched with a dose of shrimp waste was able to increase the growth and production of sweet corn plants with the best dose of chicken manure + 12 ml/l of shrimp waste.

Keywords

Sweet corn, chicken manure, shrimp waste, chitosan

Article Details

How to Cite
1.
Zahanis Z, Siska S, Ermawati E. The Effect of Chicken Cage Fertilizer with Dosage of Waste Shrimp on Growth and Production of Sweet Corn (Zea mays saccharata Sturt). EKSAKTA [Internet]. 2023Mar.30 [cited 2025Jan.13];24(01):56-6. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/361

References

  1. Pangaribuan, D. H., & Hendarto, K. (2018). The effect of organic fertilizer and urea fertilizer on growth, yield and quality of sweet corn and soil health. Asian Journal of Agriculture and Biology, 6(3), 335-344.
  2. Dziwulska-Hunek, A., Szymanek, M., & Stadnik, J. (2020). Impact of pre-sowing red light treatment of sweet corn seeds on the quality and quantity of yield. Agriculture, 10(5), 165.
  3. Ashritha, A., & Debbarma, V. (2022). Effect of Organic Manures and Spacing on Growth and Yield of Sweet Corn (Zea mays saccharata L.). International Journal of Plant & Soil Science, 34(22), 1555-1560.
  4. Yudiarini, N., & Pratiwi, L. P. K. (2021). The Adoption Rate Of Sweet Corn As An Effort To Increase The Farmers'income And Sustainable Agriculture Development In Bali. International Journal of Applied Science and Sustainable Development (IJASSD), 3(2), 66-72.
  5. Sukanteri, N. P., Diah Yuniti, I., Suryana, I., Verrawati, Y., Widnyana, I. K., & Suparyana, P. K. (2020). Utilization Of Biotechnology Of Beef Waste As An Input For Sustainable Agriculture Development In The Sweet Corn Commodity. International Journal of Disaster Recove, 11(3), 2630-2640.
  6. Badan Pusat Statistik. (2019). Produksi Jagung Provinsi Sumatera Barat Menurut
  7. Kabupaten/Kota (Ton). https://sumbar.bps.go.id. 8 Mei 2017.
  8. Wang, Y., Zhu, Y., Zhang, S., & Wang, Y. (2018). What could promote farmers to replace chemical fertilizers with organic fertilizers?. Journal of cleaner production, 199, 882-890.
  9. Kyakuwaire, M., Olupot, G., Amoding, A., Nkedi-Kizza, P., & Ateenyi Basamba, T. (2019). How safe is chicken litter for land application as an organic fertilizer?: A review. International journal of environmental research and public health, 16(19), 3521.
  10. Zhang, Y., Wang, Y., Zhang, Z., Cui, W., Zhang, X., & Wang, S. (2021). Removing copper and cadmium from water and sediment by magnetic microspheres-MnFe2O4/chitosan prepared by waste shrimp shells. Journal of Environmental Chemical Engineering, 9(1), 104647.
  11. Amarasekara, E. A. K. K., Pathiratne, A., & Wanninayake, T. (2021). Heavy Metal (Lead, Cadmium and Copper) accumulation capacity of the brackish water clam, Meretrix casta inhabiting selected estuaries in Sri Lanka. Int. J. Sci. Res., 11, 9-21.
  12. Ezemonye, L. I., Adebayo, P. O., Enuneku, A. A., Tongo, I., & Ogbomida, E. (2019). Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin River, Nigeria. Toxicology Reports, 6, 1-9.
  13. Arangote, V. R., Saura, R. B. D. L., & Rollon, R. J. C. (2019). Growth and yield response of peanut,(Arachis hypogaea L.) and soil characteristics with application of inorganic and organic fertilizer and dolomite addition. International Journal of Biosciences, 15(6), 164-173.
  14. Zahanis, Fatimah, and Darman. (2020). The Effect of Chicken Manure and Lime on Growth and Production of Peanut (Arachis hypogaea L.) in Ultisol. Embryo Journal.12(1): 1-16.
  15. ME Trenkel, T. (2021). Slow-and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Use Effiiency in Agriculture. International Fertilizer Industry Association (IFA).
  16. Islam, M., & Beg, S. (2021). Rule-of-Thumb Instructions to Improve Fertilizer Management: Experimental Evidence from Bangladesh. Economic Development and Cultural Change, 70(1), 237-281.
  17. Lorenz, K., & Lal, R. (2016). Environmental impact of organic agriculture. Advances in agronomy, 139, 99-152.
  18. Nesterenko, N. Y., Pakhomova, N. V., & Richter, K. K. (2020). Sustainable development of organic agriculture: Strategies of Russia and its regions in context of the application of digital economy technologies.
  19. Nandwani, D., & Nwosisi, S. (2016). Global trends in organic agriculture. Organic farming for sustainable agriculture, 1-35.
  20. Igunsyah, T. R., Yusnaini, S., & Niswati, A. (2013). Effect of Shrimp Head Waste on pH and Qualyti Of Tofu Liquid Waste as an Material Basis Liquid Organicfertilizer.
  21. Kiruba N, J. M., & Saeid, A. (2022). An Insight into Microbial Inoculants for Bioconversion of Waste Biomass into Sustainable “Bio-Organic” Fertilizers: A Bibliometric Analysis and Systematic Literature Review. International Journal of Molecular Sciences, 23(21), 13049.
  22. Lal, R. (2017). Encyclopedia of soil science. CRC Press.
  23. Bouma, J., Montanarella, L., & Evanylo, G. (2019). The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use and Management, 35(4), 538-546.
  24. Rasweefali, M. K., Sabu, S., Sunooj, K. V., Sasidharan, A., & Xavier, K. M. (2021). Consequences of chemical deacetylation on physicochemical, structural and functional characteristics of chitosan extracted from deep-sea mud shrimp. Carbohydrate Polymer Technologies and Applications, 2, 100032.
  25. Triunfo, M., Tafi, E., Guarnieri, A., Salvia, R., Scieuzo, C., Hahn, T., ... & Falabella, P. (2022). Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Scientific Reports, 12(1), 6613.
  26. Sofyan, E. T., & Sara, D. S. (2019). The effect of organic and inorganic fertilizer applications on N, P and K uptake and yield of sweet corn (Zea mays saccharata Sturt). Journal of Tropical Soils, 23(3), 111-116.
  27. Marlina, N., Rahim, S. E., & Hawayanti, E. (2017). Utilization of Organic Fertilizer on Sweet Corn (Zea mays saccharata Sturt) Crop at Shallow Swamp Land. In MATEC Web of Conferences (Vol. 97, p. 01103). EDP Sciences.
  28. Tudor, V. C., Stoicea, P., Chiurciu, I. A., Soare, E., Iorga, A. M., Dinu, T. A., ... & Dumitru, E. A. (2023). The Use of Fertilizers and Pesticides in Wheat Production in the Main European Countries. Sustainability, 15(4), 3038.
  29. Tan, H. W., Lim, Z. Y. J., Muhamad, N. A., & Liew, F. F. (2022). Potential economic value of chitin and its derivatives as major biomaterials of seafood waste, with particular reference to Southeast Asia. Journal of Renewable Materials, 10(4), 909.
  30. Pratama, P. N., & Utomo, A. S. (2019). Potential Biogas of Fish Waste: as a Solution of Energy Crisis. Aquaculture, 6(7,901,526), 11-13.
  31. Khan, A., Tan, D. K. Y., Munsif, F., Afridi, M. Z., Shah, F., Wei, F., ... & Zhou, R. (2017). Nitrogen nutrition in cotton and control strategies for greenhouse gas emissions: a review. Environmental Science and Pollution Research, 24, 23471-23487.
  32. Barker, A. V., & Bryson, G. M. (2016). Nitrogen. In Handbook of plant nutrition (pp. 37-66). CRC Press.
  33. Poria, V., Rana, A., Kumari, A., Grewal, J., Pranaw, K., & Singh, S. (2021). Current perspectives on chitinolytic enzymes and their agro-industrial applications. Biology, 10(12), 1319.
  34. Veliz, E. A., Martínez-Hidalgo, P., & Hirsch, A. M. (2017). Chitinase-producing bacteria and their role in biocontrol. AIMS microbiology, 3(3), 689.
  35. Deka, A. M., Kalita, H., Borah, N., & Zaman, A. S. N. (2019). Nutrient uptake and nutrient balance as influenced by different rice based cropping patterns in Assam. J. Crop Weed, 15, 72-78.
  36. Abduh, A. M., Hanudin, E., Purwanto, B. H., & Utami, S. N. H. (2020). Effect of plant spacing and organic fertilizer doses on methane emission in organic rice fields. Environment and Natural Resources Journal, 18(1), 66-74.
  37. Rohmah, K. N., & Taratima, W. (2022). Effect of Chitosan, Coconut Water and Potato Extract on Protocorm Growth and Plantlet Regeneration of Cymbidium aloifolium (L.) Sw. Current Applied Science and Technology, 10-55003.
  38. Coelho, N., & Romano, A. (2022). Impact of chitosan on plant tissue culture: recent applications. Plant Cell, Tissue and Organ Culture (PCTOC), 1-13.
  39. Doughty, C. E., Roman, J., Faurby, S., Wolf, A., Haque, A., Bakker, E. S., ... & Svenning, J. C. (2016). Global nutrient transport in a world of giants. Proceedings of the National Academy of Sciences, 113(4), 868-873.
  40. Li, X., Jousset, A., de Boer, W., Carrión, V. J., Zhang, T., Wang, X., & Kuramae, E. E. (2019). Legacy of land use history determines reprogramming of plant physiology by soil microbiome. The ISME journal, 13(3), 738-751.
  41. Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Barbanti, L., Aamer, M., ... & Aslam, M. T. (2021). Heat stress in cultivated plants: Nature, impact, mechanisms, and mitigation strategies—A review. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 155(2), 211-234.
  42. Mukta, J. A., Rahman, M., Sabir, A. A., Gupta, D. R., Surovy, M. Z., Rahman, M., & Islam, M. T. (2017). Chitosan and plant probiotics application enhance growth and yield of strawberry. Biocatalysis and agricultural biotechnology, 11, 9-18.
  43. Rahman, M., Mukta, J. A., Sabir, A. A., Gupta, D. R., Mohi-Ud-Din, M., Hasanuzzaman, M., ... & Islam, M. T. (2018). Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit. PLoS One, 13(9), e0203769.
  44. Bruulsema, T. (2018). Managing nutrients to mitigate soil pollution. Environmental pollution, 243, 1602-1605.
  45. Wang, W., Zhong, Z., Wang, Q., Wang, H., Fu, Y., & He, X. (2017). Glomalin contributed more to carbon, nutrients in deeper soils, and differently associated with climates and soil properties in vertical profiles. Scientific reports, 7(1), 13003.
  46. Kearney, G., Grau, D., Nieves Torres, D., Shin, S. M., & Lee, S. H. (2022). S-SCAM inhibits Axin-dependent synaptic function of GSK3β in a sex-dependent manner. Scientific Reports, 12(1), 4090.
  47. Carafoli, E., & Krebs, J. (2016). Why calcium? How calcium became the best communicator. Journal of Biological Chemistry, 291(40), 20849-20857.
  48. Dorozhkin, S. V. (2016). Calcium orthophosphates (CaPO4): occurrence and properties. Progress in biomaterials, 5(1), 9-70.
  49. Chougale, B. A., Mohite, A. B., & Jadhav, Y. R. (2017). Effect of sowing dates and fertilizer levels on growth, yield and quality of sweet corn (Zea mays Saccharata Sturt). Trends in Biosciences, 10(30), 6268-6270.
  50. Hadiya, V. H., Shah, K. A., & Nayaka, P. (2018). Effects of phosphorus and potassium on yield attributes and yield of summer sweet corn (Zea mays L. var. saccharata Sturt) under South Gujarat condition. International Journal of Tropical Agriculture, 36(3), 753-758.
  51. Anggara, R., Sularno, S., & Junaidi, J. (2017). Pengaruh pemberian oligo kitosan terhadap pertumbuhan dan produksi tanaman jagung Srikandi Putih-1. Jurnal Agrosains dan Teknologi, 1(2), 1-8.
  52. Adinurani, P. G., Rahayu, S., Budi, L. S., Pambudi, S., & Soni, P. (2019, June). Production potensial of sweet corn (Zea mays Linn. var. Saccharata Sturt)‘Bonanza’to different planting pattern and phosphorus sources. In IOP Conference Series: Earth and Environmental Science (Vol. 293, No. 1, p. 012032). IOP Publishing.
  53. FATTAH, K. M., ŞENSOY, S., & ESMAIL, A. O. (2019). The effects of plant density and organic fertilizer on growth and yield of sweet corn (Zea mays L. var. saccharata Sturt). Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(1), 43-55.
  54. Rao, B. M., Mishra, G. C., Mishra, G., Maitra, S., & Adhikari, R. (2020). Effect of integrated nutrient management on production potential and economics in summer sweet corn (Zea mays L. var. Saccharata). International Journal of Chemical Studies, 8(2), 141-144.
  55. Sofyan, E. T., Sara, D. S., & Machfud, Y. (2019, December). The effect of organic and inorganic fertilizer applications on N, P-uptake, K-uptake and yield of sweet corn (Zea mays saccharata Sturt). In IOP Conference Series: Earth and Environmental Science (Vol. 393, No. 1, p. 012021). IOP Publishing.
  56. Hong, S. H., Song, Y. S., Seo, D. J., Kim, K. Y., & Jung, W. J. (2017). Antifungal activity and expression patterns of extracellular chitinase and β-1, 3-glucanase in Wickerhamomyces anomalus EG2 treated with chitin and glucan. Microbial pathogenesis, 110, 159-164.
  57. Ramos-Puebla, A., De Santiago, C., Trombotto, S., David, L., Larralde-Corona, C. P., & Shirai, K. (2016). Addition of abscisic acid increases the production of chitin deacetylase by Colletotrichum gloeosporioides in submerged culture. Process Biochemistry, 51(8), 959-966.

Most read articles by the same author(s)