Main Article Content

Abstract

The aim of the study was to analyze the interaction between the concentration of bamboo shoots of liquid organic fertilizer and cucumber plant varieties on the growth and yield of cucumber plants. This experiment used a Completely Randomized Design (CRD) with two factors. The first factor is the type of cucumber plant varieties, Wulan F1 variety and Mercy F1 variety. The second factor is the addition of Bamboo Shoots POC which consists of 4 levels, 0, 50, 75 and 100 ml/liter of water. The parameters observed were stem length, age of first flower appearance, age of first harvest, number of planting fruit, fruit diameter, fruit length, fruit weight of crop, fruit weight per plot and per hectare. Based on the results of the experiment, it can be concluded that giving bamboo shoots POC 100 ml/liter of water can increase the growth and yield of cucumber plants reaching 47.31 tons/ha.

Keywords

Cucumber POC bamboo shoots Wulan Mercy

Article Details

How to Cite
1.
Zahanis Z, Ernita M, Kardila E, Herman W, Resigia E. Growth Studies of Cucumber (Cucumis sativus L.) Varieties Plants by Bamboo (Dendrocalamus asper) Flour Organic Fertilizer . EKSAKTA [Internet]. 2021Mar.27 [cited 2022Nov.29];22(1):61-72. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/259

References

  1. Zavershneva, T. A., Nikishina, M. B., Boykova, O. I., Ivanova, E. V., Polovezkaya, O. S., Atroshchenko, Y. M., & Kobrakov, K. I. (2017). Study of the effect of organic dicarboxylic acids on biometric indicators and accumulation of nitrate ions in cucumber fruits. Butlerov Communications, 51(9), 76-82.
  2. Sakurai, N., Shibata, K., & Kamisaka, S. (1975). Stimulation of auxin-induced elongation of cucumber hypocotyl sections by dihydroconiferyl alcohol. Dihydroconiferyl alcohol inhibits indole-3-acetic acid degradation in vivo and in vitro. Plant and Cell Physiology, 16(5), 845-855.
  3. Marliah, A., Anhar, A., & Hayati, E. (2020). Combine organic and inorganic fertilizer increases yield of cucumber (Cucumissativus L.). In IOP Conference Series: Earth and Environmental Science (Vol. 425, No. 1, p. 012075). IOP Publishing.
  4. Daryono, B. S., Fitriyah, F., Saraswati, U., & Natsuaki, K. T. (2017). Characterization of a novel virus infected watermelon in Indonesia based on viral particle using electron microscope.
  5. Ekinci, M., Dursun, A., Yildirim, E., & Parlakova, F. (2014). Effects of nanotechnology liquid fertilizers on the plant growth and yield of cucumber (Cucumis sativus L.). Acta Scientiarum Polonorum Hortorum Cultus, 13(3), 135-141.
  6. Gharib, F. A., Moussa, L. A., & Massoud, O. N. (2008). Effect of compost and bio-fertilizers on growth, yield and essential oil of sweet marjoram (Majorana hortensis) plant. International Journal of Agriculture and Biology, 10(4), 381-387.
  7. Hakim, A., Purvis, A. C., & Mullinix, B. G. (1999). Differences in chilling sensitivity of cucumber varieties depends on storage temperature and the physiological dysfunction evaluated. Postharvest Biology and Technology, 17(2), 97-104.
  8. Zhang, J., Yang, J., Zhang, L., Luo, J., Zhao, H., Zhang, J., & Wen, C. (2020). A new SNP genotyping technology Target SNP-seq and its application in genetic analysis of cucumber varieties. Scientific reports, 10(1), 1-11.
  9. Kappers, I. F., Hoogerbrugge, H., Bouwmeester, H. J., & Dicke, M. (2011). Variation in herbivory-induced volatiles among cucumber (Cucumis sativus L.) varieties has consequences for the attraction of carnivorous natural enemies. Journal of chemical ecology, 37(2), 150-160.
  10. Kanobdee, J., Lavapaurya, T., Subhadrabandhu, S., & Srinives, P. (1990). Combining ability of yield and yield components in pickling cucumber. Agriculture and Natural Resources, 24(1), 102-107.
  11. Li, Y., Jiang, P., Chang, S. X., Wu, J., & Lin, L. (2010). Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. Journal of Soils and Sediments, 10(4), 739-747.
  12. Bernas, S. M., Wijaya, A., Sagala, E. P., Fitri, S. N. A., & Napoleon, A. (2017). Briquettes Compost and Liquid Fertilizer Application for Yellow Local Rice Growing on Bamboo Rafts as Floating System. Sains Tanah Journal of Soil Science and Agroclimatology, 14(2), 63-71.
  13. Wu, Y., Yang, P., Chen, J., Shao, J. F., & Gui, R. (2020). Selenium Biofortification of Bamboo Shoots by Liquid Se Fertilization in the Culm Pith Cavity. ACS Food Science & Technology.
  14. Sodiq, A. H., Setiawati, M. R., Santosa, D. A., & Widayat, D. (2019, November). The potency of bio-organic fertilizer containing local microorganism of Cibodas village, Lembang-West Java. In IOP Conference Series: Earth and Environmental Science (Vol. 383, No. 1, p. 012001). IOP Publishing.
  15. Kasi, P. D., Suaedi, S., & Angraeni, F. (2018). Pemanfaatan pupuk organik cair rebung bambu u ntuk pertumbuhan kangkung secara hidroponik. Biosel (Biology Science and Education): Jurnal Penelitian Science dan Pendidikan, 7(1), 42-48.
  16. Storey, R. D. (1989). Textbook errors & misconceptions in biology: Photosynthesis. The American Biology Teacher, 51(5), 271-274.
  17. Sutejo, M. M. (2002). Pupuk dan cara Pemupukannya. Rineka Cipta. Jakarta. 177p.
  18. Mackay, I., Horwell, A., Garner, J., White, J., McKee, J., & Philpott, H. (2011). Reanalyses of the historical series of UK variety trials to quantify the contributions of genetic and environmental factors to trends and variability in yield over time. Theoretical and Applied Genetics, 122(1), 225-238.
  19. Florez, A., Pujolà, M., Valero, J., Centelles, E., Almirall, A., & Casañas, F. (2009). Genetic and environmental effects on chemical composition related to sensory traits in common beans (Phaseolus vulgaris L.). Food Chemistry, 113(4), 950-956.
  20. Davison, J. (1999). Genetic exchange between bacteria in the environment. Plasmid, 42(2), 73-91.
  21. Bradshaw, A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. In Advances in genetics (Vol. 13, pp. 115-155). Academic Press.
  22. Queitsch, C., Sangster, T. A., & Lindquist, S. (2002). Hsp90 as a capacitor of phenotypic variation. Nature, 417(6889), 618-624.
  23. Suge, J. K., Omunyin, M. E., & Omami, E. N. (2011). Effect of organic and inorganic sources of fertilizer on growth, yield and fruit quality of eggplant (Solanum Melongena L). Archives of Applied Science Research, 3(6), 470-479.
  24. Bindraban, P. S., Dimkpa, C., Nagarajan, L., Roy, A., & Rabbinge, R. (2015). Revisiting fertilisers and fertilisation strategies for improved nutrient uptake by plants. Biology and Fertility of Soils, 51(8), 897-911.
  25. Stitt, M., & Schulze, D. (1994). Does Rubisco control the rate of photosynthesis and plant growth? An exercise in molecular ecophysiology. Plant, Cell & Environment, 17(5), 465-487.
  26. MacIntyre, H. L., Kana, T. M., & Geider, R. J. (2000). The effect of water motion on short-term rates of photosynthesis by marine phytoplankton. Trends in plant science, 5(1), 12-17.
  27. Fageria, N. K., Baligar, V. C., & Li, Y. C. (2008). The role of nutrient efficient plants in improving crop yields in the twenty first century. Journal of plant nutrition, 31(6), 1121-1157.
  28. Palm, C. A. (1995). Contribution of agroforestry trees to nutrient requirements of intercropped plants. Agroforestry systems, 30(1-2), 105-124.
  29. Sonneveld, C., & Voogt, W. (2009). Plant nutrition in future greenhouse production. In Plant nutrition of greenhouse crops (pp. 393-403). Springer, Dordrecht.
  30. Chapin, F. S., Bloom, A. J., Field, C. B., & Waring, R. H. (1987). Plant responses to multiple environmental factors. Bioscience, 37(1), 49-57.