Main Article Content

Abstract

This research aims to make a 4/4 plate Al-Cu plate-based hydrogen generator. The method used is design and engineering as well as testing the performance of the gas produced during the electrolysis process of water. The results obtained are hydrogen reactors that are capable of producing 7.5 mL of gas from water with a supporting voltage of 2 V and an electric current of 0.6 A. In sodium acetate (CH3COONa) material 144 mL of gas is produced at a supporting voltage of 2 V and an electric current of 0.6 A.

Keywords

Generator, Performance, Generator, Al-Cu, Sandwich

Article Details

How to Cite
1.
Zainul R, Wardani SW. The Hydrogen Generator Performance of Sandwich Designed 4/4 Al-Cu Plates. Eksakta [Internet]. 2019Apr.30 [cited 2020Jul.8];20(1):100-4. Available from: http://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/177

References

  1. De Fátima Palhares, D. D. A., Vieira, L. G. M. and Damasceno, J. J. R. (2018) ‘Hydrogen production by a low-cost electrolyzer developed through the combination of alkaline water electrolysis and solar energy use’, International Journal of Hydrogen Energy, 43(9), pp. 4746–4753. doi: 10.1016/j.ijhydene.2018.01.051.
  2. dos Santos, K. G. et al. (2017) ‘Hydrogen production in the electrolysis of water in Brazil, a review’, Renewable and Sustainable Energy Reviews. Elsevier, 68(July 2016), pp. 563–571. doi: 10.1016/j.rser.2016.09.128.
  3. Fan, Wenqing., Qinghong Zhang dan Ye Wang. 2013. “Semiconductor-based Nanocomposites for Photocatalytic H2 Production and CO2 Conversion. Phys.Chem. DOI: 10.1039/C6TA10497E.
  4. Jang, B. W. L. et al. (2010) ‘Fuels of the future’, Energy and Environmental Science, 3(3), p. 253. doi: 10.1039/c003390c.
  5. Novan, Yoga. (2017). ' Pengaruh Prosentase Fraksi Massa NaOH (Natrium
  6. Hidroksida) Sebagai Katalis Dalam Proses Elektrolisis Dengan Menggunakan Elektrolizer Tipe Dry Cell'. Malang: Jurnal Islam Malang
  7. Fan, Wenqing., Qinghong Zhang dan Ye Wang. 2013. “Semiconductor-based Nanocomposites for Photocatalytic H2 Production and CO2 Conversion”. Phys.Chem. DOI: 10.1039/C6TA10497E.
  8. Li, Xin., Jiaguo Yu., Jingxiang Low., Yueping Fang., Jing Xiaoc dan Xiaobo Chen. 2014. “Engineering Heterogeneous Semiconductors for Solar Water Splitting”. Journal of Materials Chemistry A. DOI: 10.1039/c4ta04461d.
  9. Liao, Chi-Hung., Chao-Wei Huang dan Jeffrey C. S. Wu. 2012. “Hydrogen Production from Semiconductor-based Photocatalysis via Water Splitting: Review”. Catalysts, 2, 490-516; ISSN 2073-4344. doi:10.3390/catal2040490.
  10. Lopés, Tânia., Paula Dias., Luísa Andrade., Adélio Mendes 2014. “An Innovative Photoelectrochemical Lab Device for Solar Water Splitting”. Solar Energy Materials & Solar Cells 128 (2014) : 399–410. http://dx.doi.org/10.1016/j.solmat.2014.05.051
  11. Melián, E. Pulido., O. González Diaz., A. Ortega Méndez., Cristina R. Lopez., M. Nereida Suárez., J.M. Don˜a Rodriguez., J.A. Navı´o., D. Fernández Hevia. 2012. “Efficient and Affordable Hydrogen Production by Water Photo-Splitting Using TiO2-Based Photocatalysts”. Journal of Hydrogen Energy (38): 2144-2155. Doi: 10.1016/j.ijhydene.2012.12.005.
  12. Navarro, Rufino M., M. Consuelo Alvarez-Galvan., Jose A. Villoria de la Mano., Saeed M. Al-Zahranib dan Jose Luis G. Fierroa. 2010. A framework for visible-light water splitting. Energy & Environmental Science. DOI: 10.1039/c001123a.
  13. Sugiyarto, Kristian. 2004. Kimia Organik II. Common Text Book. Yogyakarta: Jurusan Kima FMIPA UNY.
  14. Yuan, Yu-Peng., Lin-Wei Ruan., James Barber., Say Chye Joachim Loo., dan Can Xue. 2014. “Hetero-Nanostructured Suspended Photocatalysts for Solar-to-Fuel Conversion”. Energy Environ. Sci. DOI: 10.1039/C4EE02914C.
  15. Zainul, Rahadian., Admin Alif., Hermansyah Aziz., Syukri Arief., Syukri., dan Arief
  16. Yasthopi. 2015. “Photoelectrosplitting water for Hydrogen Production Using Illumination of Indoor Lights”. Journal of Chemical and Pharmaceutical Research, 2015, 7(11):57-67.

Most read articles by the same author(s)