Main Article Content

Abstract

Autophagy is a tightly regulated catabolic process that enables cancer cells to survive under metabolic stress and contributes to the development of chemoresistance. Targeting autophagy has therefore emerged as a promising strategy to enhance cancer therapy efficacy. Flavonoids, a diverse class of polyphenolic compounds abundantly found in plants, have gained considerable attention due to their broad-spectrum biological activities, including anticancer effects. Recent studies highlight their ability to modulate key signaling pathways involved in cell proliferation, apoptosis, and autophagy. Several flavonoids, such as fisetin, apigenin, and quercetin, exhibit roles as autophagy modulators depending on the cellular context, offering therapeutic flexibility. Their low toxicity and synergistic potential with conventional drugs underscore their relevance as adjuvant agents. This review discusses the critical role of autophagy in cancer progression and drug resistance, and examines current evidence supporting the integration of flavonoids as autophagy modulators in the design of more effective and targeted anticancer strategies, particularly in breast cancer therapy.

Keywords

Flavonoid Autophagy breast cancer Apoptosis

Article Details

Author Biographies

Ade Arsianti, Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Department of Medical Chemistry

Linda Erlina, Master’s Programme in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Department of Medical Chemistry

How to Cite
1.
Dany F, Arsianti A, Erlina L, Rinendyaputri R. Flavonoid Role as Autophagy Modulators in Breast Cancer Treatment Strategy. EKSAKTA [Internet]. 2025 Oct. 30 [cited 2025 Nov. 19];26(04):440-55. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/624

References

  1. [1] Rakesh, R., PriyaDharshini, L. C., Sakthivel, K. M., & Rasmi, R. R. (2022). Role and regulation of autophagy in cancer. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1868(7), 166400.
  2. [2] Debnath, J., Gammoh, N., & Ryan, K. M. (2023). Autophagy and autophagy-related pathways in cancer. Nature reviews Molecular cell biology, 24(8), 560-575.
  3. [3] Dong, C., Wu, J., Chen, Y., Nie, J., & Chen, C. (2021). Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Frontiers in pharmacology, 12, 628690.
  4. [4] Yang, B., Li, G., Wang, S., Zheng, Y., Zhang, J., Pan, B., ... & Wang, Z. (2024). Tumor-associated macrophages/CXC motif chemokine ligand 1 promotes breast cancer autophagy-mediated chemoresistance via IGF1R/STAT3/HMGB1 signaling. Cell death & disease, 15(10), 743.
  5. [5] Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451.
  6. [6] Fu, M., Peng, Z., Wu, M., Lv, D., Li, Y., & Lyu, S. (2025). Current and future burden of breast cancer in Asia: A GLOBOCAN data analysis for 2022 and 2050. The Breast, 79, 103835.
  7. [7] Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers, 13(17), 4287.
  8. [8] Mohammad, S. I., Vasudevan, A., Nadhim Mohammed, S., Uthirapathy, S., MM, R., Kundlas, M., ... & Ali Hussein, Z. (2025). Anti-metastatic potential of flavonoids for the treatment of cancers: focus on epithelial-mesenchymal transition (EMT) process. Naunyn-Schmiedeberg's Archives of Pharmacology, 1-27.
  9. [9] Pyo, Y., Kwon, K. H., & Jung, Y. J. (2024). Anticancer potential of flavonoids: their role in cancer prevention and health benefits. Foods, 13(14), 2253.
  10. [10] Hosseinzadeh, A., Poursoleiman, F., Biregani, A. N., & Esmailzadeh, A. (2023). Flavonoids target different molecules of autophagic and metastatic pathways in cancer cells. Cancer Cell International, 23(1), 114.
  11. [11] Wang, S., Wang, K., Li, C., Chen, J., & Kong, X. (2024). Role of flavonoids in inhibiting triple-negative breast cancer. Frontiers in Pharmacology, 15, 1411059.
  12. [12] Elsori, D., Pandey, P., Ramniwas, S., Kumar, R., Lakhanpal, S., Rab, S. O., ... & Khan, F. (2024). Naringenin as potent anticancer phytocompound in breast carcinoma: from mechanistic approach to nanoformulations based therapeutics. Frontiers in pharmacology, 15, 1406619.
  13. [13] Yuan, C., Chen, G., Jing, C., Liu, M., Liang, B., Gong, G., & Yu, M. (2022). Eriocitrin, a dietary flavonoid suppressed cell proliferation, induced apoptosis through modulation of JAK2/STAT3 and JNK/p38 MAPKs signaling pathway in MCF‐7 cells. Journal of Biochemical and Molecular Toxicology, 36(1), e22943.
  14. [14] Mazurakova, A., Koklesova, L., Samec, M., Kudela, E., Kajo, K., Skuciova, V., ... & Kubatka, P. (2022). Anti-breast cancer effects of phytochemicals: primary, secondary, and tertiary care. EPMA Journal, 13(2), 315-334.
  15. [15] Wang, K., Liu, R., Li, J., Mao, J., Lei, Y., Wu, J., ... & Wei, Y. (2011). Quercetin induces protective autophagy in gastric cancer cells: involvement of Akt-mTOR-and hypoxia-induced factor 1α-mediated signaling. Autophagy, 7(9), 966-978.
  16. [16] Tsai, T. F., Thomas, I., Hwang, S., Lin, J. F., Chen, H. E., Yang, S. C., ... & Chou, K. Y. (2019). Suppression of quercetin-induced autophagy enhances cytotoxicity through elevating apoptotic cell death in human bladder cancer cells. Urological Science, 30(2), 58-66.
  17. [17] Campbell, M., Katikireddi, S. V., Sowden, A., McKenzie, J. E., & Thomson, H. (2018). Improving Conduct and Reporting of Narrative Synthesis of Quantitative Data (ICONS-Quant): protocol for a mixed methods study to develop a reporting guideline. BMJ open, 8(2), e020064.
  18. [18] Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell systematic reviews, 18(2), e1230.
  19. [19] Li, X., He, S., & Ma, B. (2020). Autophagy and autophagy-related proteins in cancer. Molecular cancer, 19(1), 12.
  20. [20] Abd El-Aziz, Y. S., Gillson, J., Jansson, P. J., & Sahni, S. (2022). Autophagy: a promising target for triple negative breast cancers. Pharmacological Research, 175, 106006.
  21. [21] Bousquet, G., El Bouchtaoui, M., Sophie, T., Leboeuf, C., de Bazelaire, C., Ratajczak, P., ... & Janin, A. (2017). Targeting autophagic cancer stem-cells to reverse chemoresistance in human triple negative breast cancer. Oncotarget, 8(21), 35205.
  22. [22] Hassan, A. M. I. A., Zhao, Y., Chen, X., & He, C. (2024). Blockage of autophagy for cancer therapy: A comprehensive review. International journal of molecular sciences, 25(13), 7459.
  23. [23] Kona, S. V., & Kalivendi, S. V. (2024). The USP10/13 inhibitor, spautin-1, attenuates the progression of glioblastoma by independently regulating RAF-ERK mediated glycolysis and SKP2. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1870(7), 167291.
  24. [24] Tang, F., Hu, P., Yang, Z., Xue, C., Gong, J., Sun, S., ... & Xie, C. (2017). SBI0206965, a novel inhibitor of Ulk1, suppresses non-small cell lung cancer cell growth by modulating both autophagy and apoptosis pathways. Oncology reports, 37(6), 3449-3458.
  25. [25] Di Donato, M., Giovannelli, P., Migliaccio, A., & Bilancio, A. (2022). Inhibition of Vps34 and p110δ PI3K impairs migration, invasion and three-dimensional spheroid growth in breast cancer cells. International Journal of Molecular Sciences, 23(16), 9008.
  26. [26] Chicote, J., Yuste, V. J., Boix, J., & Ribas, J. (2020). Cell death triggered by the autophagy inhibitory drug 3-methyladenine in growing conditions proceeds with DNA damage. Frontiers in Pharmacology, 11, 580343.
  27. [27] Schwartz-Roberts, J. L., Shajahan, A. N., Cook, K. L., Wärri, A., Abu-Asab, M., & Clarke, R. (2013). GX15-070 (Obatoclax) Induces Apoptosis and Inhibits Cathepsin D-and L–Mediated Autophagosomal Lysis in Antiestrogen-Resistant Breast Cancer Cells. Molecular cancer therapeutics, 12(4), 448-459.
  28. [28] Liu, F., Zhao, L., Wu, T., Yu, W., Li, J., Wang, W., ... & Xu, Y. (2024). Targeting autophagy with natural products as a potential therapeutic approach for diabetic microangiopathy. Frontiers in Pharmacology, 15, 1364616.
  29. [29] Ponte, L. G. S., Pavan, I. C. B., Mancini, M. C. S., da Silva, L. G. S., Morelli, A. P., Severino, M. B., ... & Simabuco, F. M. (2021). The hallmarks of flavonoids in cancer. Molecules, 26(7), 2029.
  30. [30] Bone, K., & Mills, S. (2013). Principles and practice of phytotherapy: modern herbal medicine. Elsevier Health Sciences.
  31. [31] Tang, S., Wang, B., Liu, X., Xi, W., Yue, Y., Tan, X., ... & Huang, L. (2025). Structural insights and biological activities of flavonoids: Implications for novel applications. Food Frontiers, 6(1), 218-247.
  32. [32] Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food chemistry, 383, 132531.
  33. [33] Chen, S., Wang, X., Cheng, Y., Gao, H., & Chen, X. (2023). A review of classification, biosynthesis, biological activities and potential applications of flavonoids. Molecules, 28(13), 4982.
  34. [34] Haytowitz, D. B., Wu, X., & Bhagwat, S. (2018). USDA database for the flavonoid content of selected foods, release 3.3. US Department of Agriculture, 173.
  35. [35] Zhang, Z., Shi, J., Nice, E. C., Huang, C., & Shi, Z. (2021). The multifaceted role of flavonoids in cancer therapy: leveraging autophagy with a double-edged sword. Antioxidants, 10(7), 1138.
  36. [36] Silva-Pinto, P. A., de Pontes, J. T. C., Aguilar-Morón, B., Canales, C. S. C., Pavan, F. R., & Roque-Borda, C. A. (2025). Phytochemical insights into flavonoids in cancer: Mechanisms, therapeutic potential, and the case of quercetin. Heliyon, 11(4).
  37. [37] Jiang, K., Wang, W., Jin, X., Wang, Z., Ji, Z., & Meng, G. (2015). Silibinin, a natural flavonoid, induces autophagy via ROS-dependent mitochondrial dysfunction and loss of ATP involving BNIP3 in human MCF7 breast cancer cells. Oncology reports, 33(6), 2711-2718.
  38. [38] Zheng, N., Liu, L., Liu, W. W., Li, F., Hayashi, T., Tashiro, S. I., ... & Ikejima, T. (2017). Crosstalk of ROS/RNS and autophagy in silibinin-induced apoptosis of MCF-7 human breast cancer cells in vitro. Acta Pharmacologica Sinica, 38(2), 277-289.
  39. [39] Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X., & Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomedicine & Pharmacotherapy, 121, 109604.
  40. [40] Jia, L., Huang, S., Yin, X., Zan, Y., Guo, Y., & Han, L. (2018). Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction. Life sciences, 208, 123-130.
  41. [41] Cao, X., Liu, B., Cao, W., Zhang, W., Zhang, F., Zhao, H., ... & Zhang, B. (2013). Autophagy inhibition enhances apigenin-induced apoptosis in human breast cancer cells. Chinese Journal of Cancer Research, 25(2), 212.
  42. [42] Liu, W., Ji, Y., Sun, Y., Si, L., Fu, J., Hayashi, T., ... & Ikejima, T. (2020). Estrogen receptors participate in silibinin-caused nuclear translocation of apoptosis-inducing factor in human breast cancer MCF-7 cells. Archives of Biochemistry and Biophysics, 689, 108458.
  43. [43] Wang, S., Wang, K., Wang, H., Han, J., & Sun, H. (2017). Autophagy is essential for flavopiridol induced cytotoxicity against MCF 7 breast cancer cells. Molecular Medicine Reports, 16(6), 9715-9720.
  44. [44] Yan, W., Ma, X., Zhao, X., & Zhang, S. (2018). Baicalein induces apoptosis and autophagy of breast cancer cells via inhibiting PI3K/AKT pathway in vivo and vitro. Drug design, development and therapy, 3961-3972.
  45. [45] Zhang, H. W., Hu, J. J., Fu, R. Q., Liu, X., Zhang, Y. H., Li, J., ... & Gao, N. (2018). Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Scientific reports, 8(1), 11255.
  46. [46] Mao, L., Liu, H., Zhang, R., Deng, Y., Hao, Y., Liao, W., ... & Sun, S. (2021). PINK1/Parkin-mediated mitophagy inhibits warangalone-induced mitochondrial apoptosis in breast cancer cells. Aging (Albany NY), 13(9), 12955.
  47. [47] Wu, L., Lin, Y., Gao, S., Wang, Y., Pan, H., Wang, Z., ... & Xu, Y. (2023). Luteolin inhibits triple-negative breast cancer by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling. Frontiers in Pharmacology, 14, 1200843.
  48. [48] Chen, J., Zhu, Y., Zhang, W., Peng, X., Zhou, J., Li, F., ... & Yu, X. (2018). Delphinidin induced protective autophagy via mTOR pathway suppression and AMPK pathway activation in HER-2 positive breast cancer cells. BMC cancer, 18(1), 342.
  49. [49] Han, S. H., Lee, J. H., Woo, J. S., Jung, G. H., Jung, S. H., Han, E. J., ... & Jung, J. Y. (2022). Myricetin induces apoptosis through the MAPK pathway and regulates JNK-mediated autophagy in SK-BR-3 cells. International journal of molecular medicine, 49(4), 54.
  50. [50] Nalla, K., Chatterjee, B., Poyya, J., Swain, A., Ghosh, K., Pan, A., ... & Kanade, S. R. (2025). Epigallocatechin-3-gallate inhibit the protein arginine methyltransferase 5 and Enhancer of Zeste homolog 2 in breast cancer both in vitro and in vivo. Archives of Biochemistry and Biophysics, 763, 110223.
  51. [51] Braicu, C., Pileczki, V., Pop, L., Petric, R. C., Chira, S., Pointiere, E., ... & Berindan-Neagoe, I. (2015). Dual targeted therapy with p53 siRNA and Epigallocatechingallate in a triple negative breast cancer cell model. PLoS One, 10(4), e0120936.
  52. [52] Anggoro, B., Kumara, D., Angelina, D., & Ikawati, M. (2021). Citrus flavonoids from Citrus reticulata peels potentially target an autophagy modulator, MAP1LC3A, in breast cancer. Indonesian Journal of Cancer Chemoprevention, 12(3), 114-122.
  53. [53] Önder, G. Ö., Göktepe, Ö., Baran, M., Bitgen, N., Aydın, F., & Yay, A. (2023). Therapeutic potential of hesperidin: apoptosis induction in breast cancer cell lines. Food and Chemical Toxicology, 176, 113791.
  54. [54] Zou, J., Xu, M. X., Li, F., Wang, Y. H., Li, X. Q., Yu, D. J., ... & Sun, X. D. (2022). Icaritin alleviates docetaxel‐induced skin injury by suppressing reactive oxygen species via estrogen receptors. Thoracic Cancer, 13(2), 190-201.
  55. [55] Yang, P. M., Tseng, H. H., Peng, C. W., Chen, W. S., & Chiu, S. J. (2012). Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. International journal of oncology, 40(2), 469-478.
  56. [56] Chen, M., Gowd, V., Wang, M., Chen, F., & Cheng, K. W. (2021). The apple dihydrochalcone phloretin suppresses growth and improves chemosensitivity of breast cancer cells via inhibition of cytoprotective autophagy. Food & Function, 12(1), 177-190.
  57. [57] de Sousa Silva, G. V., Lopes, A. L. V. F. G., Viali, I. C., Lima, L. Z. M., Bizuti, M. R., Haag, F. B., & Tavares de Resende e Silva, D. (2023). Therapeutic properties of flavonoids in treatment of cancer through autophagic modulation: a systematic review. Chinese Journal of Integrative Medicine, 29(3), 268-279.
  58. [58] Selmin, O. I., Donovan, M. G., Stillwater, B. J., Neumayer, L., & Romagnolo, D. F. (2020). Epigenetic regulation and dietary control of triple negative breast cancer. Frontiers in nutrition, 7, 159.
  59. [59] Zheng, N., Zhang, P., Huang, H., Liu, W., Hayashi, T., Zang, L., ... & Ikejima, T. (2015). ERα down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. Journal of pharmacological sciences, 128(3), 97-107.
  60. [60] Liu, T., Zhang, J., Li, K., Deng, L., & Wang, H. (2020). Combination of an autophagy inducer and an autophagy inhibitor: a smarter strategy emerging in cancer therapy. Frontiers in pharmacology, 11, 408.
  61. [61] Hussain, Y., Khan, H., Alam, W., Aschner, M., Abdullah, Alsharif, K. F., & Saso, L. (2022). Flavonoids Targeting the mTOR Signaling Cascades in Cancer: A Potential Crosstalk in Anti‐Breast Cancer Therapy. Oxidative Medicine and Cellular Longevity, 2022(1), 4831833.
  62. [62] Yoshii, S. R., & Mizushima, N. (2017). Monitoring and measuring autophagy. International journal of molecular sciences, 18(9), 1865.
  63. [63] Mizushima, N., & Murphy, L. O. (2020). Autophagy assays for biological discovery and therapeutic development. Trends in biochemical sciences, 45(12), 1080-1093.
  64. [64] Benvenuto, M., Albonici, L., Focaccetti, C., Ciuffa, S., Fazi, S., Cifaldi, L., ... & Bei, R. (2020). Polyphenol-mediated autophagy in cancer: evidence of in vitro and in vivo studies. International Journal of Molecular Sciences, 21(18), 6635.
  65. [65] Luo, M., Ye, L., Chang, R., Ye, Y., Zhang, Z., Liu, C., ... & Han, L. (2022). Multi-omics characterization of autophagy-related molecular features for therapeutic targeting of autophagy. Nature Communications, 13(1), 6345.
  66. [66] López-Méndez, T. B., Sánchez-Álvarez, M., Trionfetti, F., Pedraz, J. L., Tripodi, M., Cordani, M., ... & González-Valdivieso, J. (2023). Nanomedicine for autophagy modulation in cancer therapy: a clinical perspective. Cell & bioscience, 13(1), 44.
  67. [67] Zheng, H., Hu, B., Sun, Q., Cao, J., & Liu, F. (2019). Applying a chemical structure teaching method in the pharmaceutical analysis curriculum to improve student engagement and learning. Journal of Chemical Education, 97(2), 421-426.
  68. [68] Nahar, L., & Sarker, S. D. (2019). Chemistry for pharmacy students: general, organic and natural product chemistry. John Wiley & Sons.

Most read articles by the same author(s)