Main Article Content


A healthy cell maintains a homeostasis condition of glucose level, whereas cancer cells do not. Increased glucose uptake is a hallmark of cancer cells that helps them survive, proliferate, and spread. INSR is one of key feature that take part in glucose metabolism through insulin signaling. To block the entry of glucose into cells, researchers were aiming to disrupt the insulin signaling pathway as the upstream activation in glucose metabolism by inhibiting insulin receptor (INSR) using Indonesian herbal compounds. The approach during the screening was structure-based drug discovery (SBDD) method where INSR was determined as the macromolecules. Some parameters such as binding affinity, constant inhibition, drug-likeness, pharmacokinetics, and toxicity were applied to help the search of potential inhibitor. According to the test results, Heterophylin, Sanggenofuran A, and Epigallocatechin-3-O-caffeate had the strongest molecular binding activity against the INSR protein. Heterophylin is discovered in jackfruit fruit trees and Sanggenofuran A is present in mulberry trees. While Epigallocatechin-3-O-caffeate, is abundantly found in green tea plant


Molecular docking Insulin inhibitor Tumor suppressor Virtual-screening

Article Details

Author Biographies

Linda Erlina, Master’s Program in Biomedical Science, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.




Rafika Indah Paramita, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.



Fadillah Fadillah, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.



Surya Dwira, Department of Medical Chemistry, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.



Jaka Fajar Fatriansyah, Metallurgical and Materials Engineering, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia.



How to Cite
Candraningrum VH, Erlina L, Paramita RI, Fadillah F, Dwira S, Fatriansyah JF. Structure-Based Virtual Screening and Molecular Docking on the Indonesian Herbal Compound as a Promising Insulin Receptor (INSR) Inhibitor to Suppress Tumor Growth. EKSAKTA [Internet]. 2023Oct.16 [cited 2023Dec.2];23(04):487-99. Available from:


  1. Hanahan D. (2022). Hallmarks of Cancer: New Dimensions. Cancer Discovery, 12(1), 31–46.
  2. Ishihara, S., & Haga, H. (2022). Matrix Stiffness Contributes to Cancer Progression by Regulating Transcription Factors. Cancers, 14(4), 1049.
  3. Geindreau, M., Bruchard, M., & Vegran, F. (2022). Role of Cytokines and Chemokines in Angiogenesis in a Tumor Context. Cancers, 14(10), 2446.
  4. van Gerwen, J., Shun-Shion, A. S., & Fazakerley, D. J. (2023). Insulin signalling and GLUT4 trafficking in insulin resistance. Biochemical Society Transactions, 51(3), 1057–1069.
  5. Haeusler, R. A., McGraw, T. E., & Accili, D. (2018). Biochemical and cellular properties of insulin receptor signalling. Nature reviews. Molecular Cell Biology, 19(1), 31–44.
  6. Chung Le, T. K., Dao, X. D., Nguyen, D. V., Luu, D. H., Hanh Bui, T. M., Le, T. H., Nguyen, H. T., Le, T. N., Hosaka, T., & Thao Nguyen, T. T. (2023). Insulin signaling and its application. Frontiers.
  7. Dong, S., Li, W., Li, X., Wang, Z., Chen, Z., Shi, H., He, R., Chen, C., & Zhou, W. (2022). Glucose metabolism and tumour microenvironment in pancreatic cancer: A key link in cancer progression. Frontiers in Immunology, 13, 1038650.
  8. Li, W., Zhang, X., Sang, H., Zhou, Y., Shang, C., Wang, Y., & Zhu, H. (2019). Effects of hyperglycemia on the progression of tumor diseases. Journal of Experimental & Clinical Cancer Research : CR, 38(1), 327.
  9. Kim, S. H., & Baek, K. H. (2021). Regulation of Cancer Metabolism by Deubiquitinating Enzymes: The Warburg Effect. International Journal of Molecular Sciences, 22(12), 6173.
  10. Bose, S., Zhang, C., & Le, A. (2021). Glucose Metabolism in Cancer: The Warburg Effect and Beyond. Advances in Experimental Medicine and Biology, 1311, 3–15.
  11. Cassim, S., Vučetić, M., Ždralević, M., & Pouyssegur, J. (2020). Warburg and Beyond: The Power of Mitochondrial Metabolism to Collaborate or Replace Fermentative Glycolysis in Cancer. Cancers, 12(5), 1119.
  12. Rahman, I., Athar, M. T., & Islam, M. (2021). Type 2 Diabetes, Obesity, and Cancer Share Some Common and Critical Pathways. Frontiers in Oncology, 10, 600824.
  13. Scully, T., Ettela, A., LeRoith, D., & Gallagher, E. J. (2021). Obesity, Type 2 Diabetes, and Cancer Risk. Frontiers in Oncology, 10, 615375.
  14. Gurney, J., Stanley, J., Teng, A., Krebs, J., Koea, J., Lao, C., Lawrenson, R., Meredith, I., Sika-Paotonu, D., & Sarfati, D. (2022). Cancer and diabetes co-occurrence: A national study with 44 million person-years of follow-up. PloS One, 17(11), e0276913
  15. Zhang, X., Zhu, X., Bi, X., Huang, J., & Zhou, L. (2022). The Insulin Receptor: An Important Target for the Development of Novel Medicines and Pesticides. International Journal of Molecular Sciences, 23(14), 7793.
  16. Liu, Q., Wang, Z., Cao, J., Dong, Y., & Chen, Y. (2022). The Role of Insulin Signaling in Hippocampal-Related Diseases: A Focus on Alzheimer's Disease. International Journal of Molecular Sciences, 23(22), 14417.
  17. Baghaie, L., Bunsick, D. A., & Szewczuk, M. R. (2023). Insulin Receptor Signaling in Health and Disease. Biomolecules, 13(5), 807.
  18. Nguyen, T. N. Q., Jung, S., Nguyen, H. A., Lee, B., Vu, S. H., Myagmarjav, D., Eum, H. H., Lee, H. O., Jo, T., Choi, Y., & Lee, M. S. (2022). The regulation of insulin receptor/insulin-like growth factor 1 receptor ratio, an important factor for breast cancer prognosis, by TRIP-Br1. Journal of Hematology & Oncology, 15(1), 82.
  19. Vella, V., Malaguarnera, R., Nicolosi, M. L., Morrione, A., & Belfiore, A. (2019). Insulin/IGF signaling and discoidin domain receptors: An emerging functional connection. Biochimica et biophysica acta. Molecular Cell Research, 1866(11), 118522.
  20. Sanderson, M. P., Apgar, J., Garin-Chesa, P., Hofmann, M. H., Kessler, D., Quant, J., Savchenko, A., Schaaf, O., Treu, M., Tye, H., Zahn, S. K., Zoephel, A., Haaksma, E., Adolf, G. R., & Kraut, N. (2015). BI 885578, a Novel IGF1R/INSR Tyrosine Kinase Inhibitor with Pharmacokinetic Properties That Dissociate Antitumor Efficacy and Perturbation of Glucose Homeostasis. Molecular Cancer Therapeutics, 14(12), 2762–2772.
  21. Ma, L., Zhang, M., Zhao, R., Wang, D., Ma, Y., & Li, A. (2021). Plant Natural Products: Promising Resources for Cancer Chemoprevention. Molecules, 26(4), 933.
  22. Talib, W. H., Alsalahat, I., Daoud, S., Abutayeh, R. F., & Mahmod, A. I. (2020). Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules, 25(22), 5319.
  23. Batool, M., Ahmad, B., & Choi, S. (2019). A Structure-Based Drug Discovery Paradigm. International Journal of Molecular Sciences, 20(11), 2783.
  24. C, S., S, D. K., Ragunathan, V., Tiwari, P., A, S., & P, B. D. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure and Dynamics, 40(2), 585–611.
  25. Durán-Iturbide, N. A., Díaz-Eufracio, B. I., & Medina-Franco, J. L. (2020). In Silico ADME/Tox Profiling of Natural Products: A Focus on BIOFACQUIM. ACS Omega, 5(26), 16076–16084.
  26. Adon, T., Shanmugarajan, D., Ather, H., Ansari, S. M. A., Hani, U., Madhunapantula, S. V., & Honnavalli, Y. K. (2023). Virtual Screening for Identification of Dual Inhibitors against CDK4/6 and Aromatase Enzyme. Molecules, 28(6), 2490.
  27. Vinod, S. M., Murugan Sreedevi, S., Krishnan, A., Ravichandran, K., Karthikeyan, P., Kotteswaran, B., & Rajendran, K. (2023). Complexity of the Role of Various Site-Specific and Selective Sudlow Binding Site Drugs in the Energetics and Stability of the Acridinedione Dye-Bovine Serum Albumin Complex: A Molecular Docking Approach. ACS Omega, 8(6), 5634–5654.
  28. Domínguez-Villa, F. X., Durán-Iturbide, N. A., & Ávila-Zárraga, J. G. (2021). Synthesis, molecular docking, and in silico ADME/Tox profiling studies of new 1-aryl-5-(3-azidopropyl)indol-4-ones: Potential inhibitors of SARS CoV-2 main protease. Bioorganic Chemistry, 106, 104497.
  29. Guan, L., Yang, H., Cai, Y., Sun, L., Di, P., Li, W., Liu, G., & Tang, Y. (2018). ADMET-score - a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157.
  30. Yadav, M., & Eswari, J. S. (2023). Opportunistic Challenges of Computer-aided Drug Discovery of Lipopeptides: New Insights for Large Molecule Therapeutics. Avicenna Journal of Medical Biotechnology, 15(1), 3–13.
  31. Yadav, R., Imran, M., Dhamija, P., Chaurasia, D. K., & Handu, S. (2021). Virtual screening, ADMET prediction and dynamics simulation of potential compounds targeting the main protease of SARS-CoV-2. Journal of Biomolecular Structure & Dynamics, 39(17), 6617–6632.
  32. Dulsat, J., López-Nieto, B., Estrada-Tejedor, R., & Borrell, J. I. (2023). Evaluation of Free Online ADMET Tools for Academic or Small Biotech Environments. Molecules, 28(2), 776.
  33. Yang, X., Xing, X., Liu, Y., & Zheng, Y. (2022). Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking. Frontiers in Pharmacology, 13, 962863.
  34. Mirza, Z., & Karim, S. (2023). Structure-Based Profiling of Potential Phytomolecules with AKT1 a Key Cancer Drug Target. Molecules, 28(6), 2597.
  35. Butnarasu, C., Garbero, O. V., Petrini, P., Visai, L., & Visentin, S. (2023). Permeability Assessment of a High-Throughput Mucosal Platform. Pharmaceutics, 15(2), 380.
  36. Deodhar, M., Al Rihani, S. B., Arwood, M. J., Darakjian, L., Dow, P., Turgeon, J., & Michaud, V. (2020). Mechanisms of CYP450 Inhibition: Understanding Drug-Drug Interactions Due to Mechanism-Based Inhibition in Clinical Practice. Pharmaceutics, 12(9), 846.
  37. Ahmad, I., Kuznetsov, A. E., Pirzada, A. S., Alsharif, K. F., Daglia, M., & Khan, H. (2023). Computational pharmacology and computational chemistry of 4-hydroxyisoleucine: Physicochemical, pharmacokinetic, and DFT-based approaches. Frontiers in Chemistry, 11, 1145974.
  38. Vélez, L. A., Delgado, Y., Ferrer-Acosta, Y., Suárez-Arroyo, I. J., Rodríguez, P., & Pérez, D. (2022, June 17). Theoretical Prediction of Gastrointestinal Absorption of Phytochemicals. International Journal of Plant Biology 13, no. 2: 163-179.
  39. Gadaleta, D., Vuković, K., Toma, C., Lavado, G. J., Karmaus, A. L., Mansouri, K., Kleinstreuer, N. C., Benfenati, E., & Roncaglioni, A. (2019). SAR and QSAR modeling of a large collection of LD50 rat acute oral toxicity data. Journal of Cheminformatics, 11(1), 58.
  40. Worasuttayangkurn, L., Nakareangrit, W., Kwangjai, J., Sritangos, P., Pholphana, N., Watcharasit, P., Rangkadilok, N., Thiantanawat, A., & Satayavivad, J. (2019). Acute oral toxicity evaluation of Andrographis paniculata-standardized first true leaf ethanolic extract. Toxicology Reports, 6, 426–430.
  41. Farhan M. (2022). Green Tea Catechins: Nature's Way of Preventing and Treating Cancer. International Journal of Molecular Sciences, 23(18), 10713.
  42. Oh, J. W., Muthu, M., Pushparaj, S. S. C., & Gopal, J. (2023). Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules, 28(5), 2151.
  43. Parish, M., Massoud, G., Hazimeh, D., Segars, J., & Islam, M. S. (2023). Green Tea in Reproductive Cancers: Could Treatment Be as Simple?. Cancers, 15(3), 862.
  44. Mokra, D., Joskova, M., & Mokry, J. (2022). Therapeutic Effects of Green Tea Polyphenol (‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24(1), 340.
  45. Banerjee, S., & Mandal, A. K. A. (2022). Role of epigallocatechin-3- gallate in the regulation of known and novel microRNAs in breast carcinoma cells. Frontiers in Genetics, 13, 995046.

Most read articles by the same author(s)