Main Article Content

Abstract

Cancer, characterized by uncontrolled cell proliferation, is a leading global cause of mortality. Targeting the fibroblast growth factor receptor (FGFR), a receptor tyrosine kinase (RTK), holds promise for anticancer drug development. FGFR4, a specific subtype, regulates various cellular processes, making it a valuable target. In-silico methods were employed to screen 20 compounds against FGFR4 (PDB ID 5JKG) using AutoDock Version 4.2.6. The top three potential inhibitors, based on Gibbs energy (ΔG) and inhibition constant (Ki), were identified: epigallocatechin3-O-pcoumarate (ΔG = -10.46 kcal/mol; Ki = 21.37 nM), 6_deoxoteasterone (ΔG = -10.22 kcal/mol; Ki = 32.35 nM), and epigallocatechin3-O-caffeate (ΔG = -9.78 kcal/mol; Ki = 68.16 nM). ADMETOX analysis confirmed compliance with Lipinski's rules, indicating their safety. These compounds show promise as FGFR4 inhibitors, potentially as standalone therapy or in combination with other anticancer drugs.

Keywords

Virtual screening Anticancer Molecular docking Fibroblast Growth factor receptor 4

Article Details

How to Cite
1.
Rosa FL, Fadilah F, Erlina L. Virtual Screening and Molecular Modelling Anticancer Molecules Targeting Fibroblast Growth Factor Receptor 4. EKSAKTA [Internet]. 2024Sep.4 [cited 2025Jan.21];25(03):276-88. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/464

References

  1. Krieghoff-Henning, E., Folkerts, J., Penzkofer, A., & Weg-Remers, S. (2017). Cancer–an overview. Medizinische Monatsschrift fur Pharmazeuten, 40(2), 48-54.
  2. Roett, M. A., & Evans, P. (2009). Ovarian cancer: an overview. American family physician, 80(6), 609-616.
  3. Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.
  4. Chhikara, B. S., & Parang, K. (2023). Global Cancer Statistics 2022: the trends projection analysis. Chemical Biology Letters, 10(1), 451-451.
  5. Ali, E. S., Sharker, S. M., Islam, M. T., Khan, I. N., Shaw, S., Rahman, M. A., ... & Mubarak, M. S. (2021). Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. In Seminars in cancer biology (Vol. 69, pp. 52-68).
  6. Pacini, L., Jenks, A. D., Lima, N. C., & Huang, P. H. (2021). Targeting the fibroblast growth factor receptor (FGFR) family in lung cancer. Cells, 10(5), 1154.
  7. Zhang, N., & Li, Y. (2023). Receptor tyrosine kinases: Biological functions and anticancer targeted therapy. Medcomm, 4(6), e446.
  8. Lang, L., & Teng, Y. (2019). Fibroblast growth factor receptor 4 targeting in cancer: new insights into mechanisms and therapeutic strategies. Cells, 8(1), 31.
  9. Levine, K. M., Ding, K., Chen, L., & Oesterreich, S. (2020). FGFR4: A promising therapeutic target for breast cancer and other solid tumors. Pharmacology & therapeutics, 214, 107590.
  10. Ahmad, I., Iwata, T., & Leung, H. Y. (2012). Mechanisms of FGFR-mediated carcinogenesis. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(4), 850-860.
  11. Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: a powerful approach for structure-based drug discovery. Current computer-aided drug design, 7(2), 146-157.
  12. Polanski, J. (2009). 4.14 Chemoinformatics. SD Brown, R. Tauler, & BBT-CC Walczak (Eds.), 459-506.
  13. da Fonseca, A. M., Caluaco, B. J., Madureira, J. M. C., Cabongo, S. Q., Gaieta, E. M., Djata, F., ... & Marinho, E. S. (2023). Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA. Molecular Biotechnology, 1-15.
  14. Perricone, U., Wieder, M., Seidel, T., Langer, T., & Padova, A. (2018). The use of dynamic pharmacophore in computer-aided hit discovery: a case study. Rational Drug Design: Methods and Protocols, 317-333.
  15. K Ho, H., Németh, G., R Ng, Y., Pang, E., Szantai-Kis, C., Zsákai, L., ... & T Chua, B. (2013). Developing FGFR4 inhibitors as potential anti-cancer agents via in silico design, supported by in vitro and cell-based testing. Current Medicinal Chemistry, 20(10), 1203-1217.
  16. Ghedini, G. C., Ronca, R., Presta, M., & Giacomini, A. (2018). Future applications of FGF/FGFR inhibitors in cancer. Expert review of anticancer therapy, 18(9), 861-872.
  17. Wu, D., Guo, M., Philips, M. A., Qu, L., Jiang, L., Li, J., ... & Chen, Y. (2016). Crystal structure of the FGFR4/LY2874455 complex reveals insights into the Pan-FGFR selectivity of LY2874455. PLoS One, 11(9), e0162491.
  18. Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of computational chemistry, 30(16), 2785-2791.
  19. Liu, Y., Cao, M., Cai, Y., Li, X., Zhao, C., & Cui, R. (2020). Dissecting the role of the FGF19-FGFR4 signaling pathway in cancer development and progression. Frontiers in cell and developmental biology, 8, 95.
  20. Zhao, X., Xu, F., Dominguez, N. P., Xiong, Y., Xiong, Z., Peng, H., ... & Teng, Y. (2018). FGFR4 provides the conduit to facilitate FGF19 signaling in breast cancer progression. Molecular carcinogenesis, 57(11), 1616-1625.
  21. Weaver, A., & Bossaer, J. B. (2021). Fibroblast growth factor receptor (FGFR) inhibitors: A review of a novel therapeutic class. Journal of Oncology Pharmacy Practice, 27(3), 702-710.
  22. Facchinetti, F., Hollebecque, A., Bahleda, R., Loriot, Y., Olaussen, K. A., Massard, C., & Friboulet, L. (2020). Facts and new hopes on selective FGFR inhibitors in solid tumors. Clinical Cancer Research, 26(4), 764-774.
  23. Fu, W., Chen, L., Wang, Z., Kang, Y., Wu, C., Xia, Q., ... & Cai, Y. (2017). Theoretical studies on FGFR isoform selectivity of FGFR1/FGFR4 inhibitors by molecular dynamics simulations and free energy calculations. Physical Chemistry Chemical Physics, 19(5), 3649-3659.
  24. Akher, F. B., Farrokhzadeh, A., Olotu, F. A., Agoni, C., & Soliman, M. E. (2019). The irony of chirality–unveiling the distinct mechanistic binding and activities of 1-(3-(4-amino-5-(7-methoxy-5-methylbenzo [b] thiophen-2-yl)-7 H-pyrrolo [2, 3-d] pyrimidin-7-yl) pyrrolidin-1-yl) prop-2-en-1-one enantiomers as irreversible covalent FGFR4 inhibitors. Organic & Biomolecular Chemistry, 17(5), 1176-1190.
  25. Razzaghi-Asl, N., Mirzayi, S., Mahnam, K., & Sepehri, S. (2018). Identification of COX-2 inhibitors via structure-based virtual screening and molecular dynamics simulation. Journal of Molecular Graphics and Modelling, 83, 138-152.
  26. Pandey, P., Avula, B., Khan, I. A., Khan, S. I., Navarro, V. J., Doerksen, R. J., & Chittiboyina, A. G. (2020). Potential modulation of human NAD [P] H-quinone oxidoreductase 1 (NQO1) by EGCG and its metabolites—a systematic computational study. Chemical research in toxicology, 33(11), 2749-2764.
  27. Tian, S., Wang, J., Li, Y., Li, D., Xu, L., & Hou, T. (2015). The application of in silico drug-likeness predictions in pharmaceutical research. Advanced drug delivery reviews, 86, 2-10.
  28. Bayya, S. R. (2019). Understanding the globally harmonized system of classification and Labeling of Chemicals-The Purple Book. International Journal of Drug Regulatory Affairs (IJDRA), 7(2), 7-16.
  29. Chemicals, L. O. (2002). Globally harmonized system of classification and labelling of chemicals (GHS).
  30. Dehghanian, F., & Alavi, S. (2021). Molecular mechanisms of the anti-cancer drug, LY2874455, in overcoming the FGFR4 mutation-based resistance. Scientific Reports, 11(1), 16593.
  31. Makky, E. A., AlMatar, M., Mahmood, M. H., Ting, O. W., & Qi, W. Z. (2021). Evaluation of the antioxidant and antimicrobial activities of ethyl acetate extract of Saccharomyces cerevisiae. Food technology and biotechnology, 59(2), 127-136.
  32. Mali, S. N., & Pandey, A. (2021). Unveiling Naturally Occurring Green Tea Polyphenol Epigallocatechin-3-Gallate (EGCG) Targeting Mycobacterium DPRE1 for Anti-Tb Drug Discovery. Eng. Proc. 2021, 11, 31.

Most read articles by the same author(s)