Main Article Content


Skin aging is a physiological process marked by changes in the skin's structure, giving rise to the characteristics of skin aging, such as pigmentation. Genome-Wide Association Studies (GWAS) identify genetic profiles that play a role in skin aging characteristics such as pigmentation. This study aimed to gather information about candidate SNPs and genes related to pigmentation characteristics of skin aging across different populations. We systematically searched relevant articles published in PubMed and ProQuest in the last ten years. Out of 212 articles screened, seven studies pertinent to our research are included in the analysis. Results indicated that in European and East Asian populations, several gene candidates such as IRF4, MC1R, ASIP, BNC2, PPARGC1B, RAB11FIP2, and CYP1A associated with SNPs that are known to have functions related to skin aging. However, further comprehensive analysis is needed to understand the functional correlation between SNP or gene candidates and pigmentation. In addition, the diversity of the subjects in the GWAS is still concerning. The future comprehensive analysis of GWAS, which involves underrepresented ones, is needed to broaden the knowledge of skin aging mechanisms across different populations.


GWAS, skin aging, pigmentation, SNP

Article Details

How to Cite
Shabihah F, Paramita RI. Genome-Wide Association Study in Pigmentation as One of Skin Aging Characteristics. EKSAKTA [Internet]. 2023Jun.30 [cited 2024Jul.13];24(02):237-48. Available from:


  1. Baumann L. (2007). Skin ageing and its treatment. The Journal of Pathology, 211(2), 241-51.
  2. Kerns M.L., Chien A.L., & Kang S (2019). Skin aging. In: Kang S, & Amagai M, & Bruckner A.L., & Enk A.H., & Margolis D.J., & McMichael A.J., & Orringer J.S.(Eds.), Fitzpatrick's Dermatology. 9th Ed. McGraw Hill. United States of America.
  3. Zhang, Y., Liu, X., Wang, J., Du, L., Ma, Y., Liu, W., Ye, R., Yang, Y., Xu, H. (2022). Analysis of Multi-Part Phenotypic Changes in Skin to Characterize the Trajectory of Skin Aging in Chinese Women. Clinical, Cosmetic and Investigational Dermatology, 15, 631-642.
  4. Vierkötter A, Krutmann J. (2012). Environmental influences on skin aging and ethnic-specific manifestations. Dermatoendocrinology. 4(3), 227-31.
  5. Nouveau-Richard, S., Yang, Z., Mac-Mary, S., Li, L., Bastien, P., Tardy, I., Bouillon, C., Humbert, P., & de Lacharrière, O. (2005). Skin ageing: a comparison between Chinese and European populations. A pilot study. Journal of dermatological science, 40(3), 187–193.
  6. Wong, Q. Y. A., & Chew, F. T. (2021). Defining skin aging and its risk factors: a systematic review and meta-analysis. Scientific reports, 11(1), 22075.
  7. Flament, F., Jacquet, L., Ye, C., Amar, D., Kerob, D., Jiang, R., Zhang, Y., Kroely, C., Delaunay, C., & Passeron, T. (2022). Artificial Intelligence analysis of over half a million European and Chinese women reveals striking differences in the facial skin ageing process. Journal of the European Academy of Dermatology and Venereology, 36(7), 1136–1142.
  8. Ju, D., & Mathieson, I. (2021). The evolution of skin pigmentation-associated variation in West Eurasia. Proceedings of the National Academy of Sciences of the United States of America, 118(1), e2009227118.
  9. Naval, J., Alonso, V., & Herranz, M. A. (2014). Genetic polymorphisms and skin aging: the identification of population genotypic groups holds potential for personalized treatments. Clinical, cosmetic and investigational dermatology, 7, 207–214.
  10. Del Bino, S., Duval, C., & Bernerd, F. (2018). Clinical and Biological Characterization of Skin Pigmentation Diversity and Its Consequences on UV Impact. International journal of molecular sciences, 19(9), 2668.
  11. National Human Genome Research Institute. (2018). Genetics vs. Genomics. Diakses pada tanggal 20 Oktober 2022.
  12. Cano-Gamez, E., & Trynka, G. (2020). From GWAS to Function: Using Functional Genomics to Identify the Mechanisms Underlying Complex Diseases. Frontiers in genetics, 11, 424.
  13. Peterson, R. E., Kuchenbaecker, K., Walters, R. K., Chen, C. Y., Popejoy, A. B., Periyasamy, S., Lam, M., Iyegbe, C., Strawbridge, R. J., Brick, L., Carey, C. E., Martin, A. R., Meyers, J. L., Su, J., Chen, J., Edwards, A. C., Kalungi, A., Koen, N., Majara, L., Schwarz, E., … Duncan, L. E. (2019). Genome-wide Association Studies in Ancestrally Diverse Populations: Opportunities, Methods, Pitfalls, and Recommendations. Cell, 179(3), 589–603.
  14. Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., McGuinness, L. A., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clinical research ed.), 372, n71.
  15. Le Clerc, S., Taing, L., Ezzedine, K., Latreille, J., Delaneau, O., Labib, T., Coulonges, C., Bernard, A., Melak, S., Carpentier, W., Malvy, D., Jdid, R., Galan, P., Hercberg, S., Morizot, F., Guinot, C., Tschachler, E., & Zagury, J. F. (2013). A genome-wide association study in Caucasian women points out a putative role of the STXBP5L gene in facial photoaging. The Journal of investigative dermatology, 133(4), 929–935.
  16. Jacobs, L. C., Hamer, M. A., Gunn, D. A., Deelen, J., Lall, J. S., van Heemst, D., Uh, H. W., Hofman, A., Uitterlinden, A. G., Griffiths, C. E. M., Beekman, M., Slagboom, P. E., Kayser, M., Liu, F., & Nijsten, T. (2015). A Genome-Wide Association Study Identifies the Skin Color Genes IRF4, MC1R, ASIP, and BNC2 Influencing Facial Pigmented Spots. The Journal of investigative dermatology, 135(7), 1735–1742.
  17. Gao, W., Tan, J., Hüls, A., Ding, A., Liu, Y., Matsui, M. S., Vierkötter, A., Krutmann, J., Schikowski, T., Jin, L., & Wang, S. (2017). Genetic variants associated with skin aging in the Chinese Han population. Journal of dermatological science, 86(1), 21–29.
  18. Liu, Y., Gao, W., Koellmann, C., Le Clerc, S., Hüls, A., Li, B., Peng, Q., Wu, S., Ding, A., Yang, Y., Jin, L., Krutmann, J., Schikowski, T., Zagury, J. F., & Wang, S. (2019). Genome-wide scan identified genetic variants associated with skin aging in a Chinese female population. Journal of dermatological science, 96(1), 42–49.
  19. Endo, C., Johnson, T. A., Morino, R., Nakazono, K., Kamitsuji, S., Akita, M., Kawajiri, M., Yamasaki, T., Kami, A., Hoshi, Y., Tada, A., Ishikawa, K., Hine, M., Kobayashi, M., Kurume, N., Tsunemi, Y., Kamatani, N., & Kawashima, M. (2018). Genome-wide association study in Japanese females identifies fifteen novel skin-related trait associations. Scientific reports, 8(1), 8974.
  20. Oh Kim, J., Park, B., Yoon Choi, J., Ra Lee, S. O., Jin Yu, S. O., Goh, M., Lee, H., Park, W. S., Soo Suh, I. N., Koh, D. S., & Hong, K. W. (2021). Identification of the Underlying Genetic Factors of Skin Aging in a Korean Population Study. Journal of cosmetic science, 72(1), 63–80.
  21. Cha M-Y, Choi J-E, Lee D-S, Lee S-R, Lee S-I, Park J-H, Shin J-H, Suh IS, Kim BH, Hong K-W. (2022). Novel Genetic Associations for Skin Aging Phenotypes and Validation of Previously Reported Skin GWAS Results. Applied Sciences, 12(22):11422.
  22. Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and Translation. American journal of human genetics, 101(1), 5–22.
  23. Giral, H., Landmesser, U., & Kratzer, A. (2018). Into the Wild: GWAS Exploration of Non-coding RNAs. Frontiers in cardiovascular medicine, 5, 181.
  24. Schipper, M., & Posthuma, D. (2022). Demystifying non-coding GWAS variants: an overview of computational tools and methods. Human molecular genetics, 31(R1), R73–R83.
  25. Gautam, Y., Afanador, Y., Ghandikota, S., & Mersha, T. B. (2020). Comprehensive functional annotation of susceptibility variants associated with asthma. Human genetics, 139(8), 1037–1053.
  26. Ritchie, G. R., Dunham, I., Zeggini, E., & Flicek, P. (2014). Functional annotation of non-coding sequence variants. Nature methods, 11(3), 294–296.
  27. Vitsios, D., Dhindsa, R. S., Middleton, L., Gussow, A. B., & Petrovski, S. (2021). Prioritizing non-coding regions based on human genomic constraint and sequence context with deep learning. Nature communications, 12(1), 1504.
  28. Tsuboi, K., Iida, S., Inagaki, H., Kato, M., Hayami, Y., Hanamura, I., Miura, K., Harada, S., Kikuchi, M., Komatsu, H., Banno, S., Wakita, A., Nakamura, S., Eimoto, T., & Ueda, R. (2000). MUM1/IRF4 expression as a frequent event in mature lymphoid malignancies. Leukemia, 14(3), 449–456.
  29. Agnarelli, A., Chevassut, T., & Mancini, E. J. (2018). IRF4 in multiple myeloma-Biology, disease and therapeutic target. Leukemia research, 72, 52–58.
  30. Simonetti, G., Carette, A., Silva, K., Wang, H., De Silva, N. S., Heise, N., Siebel, C. W., Shlomchik, M. J., & Klein, U. (2013). IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity. The Journal of experimental medicine, 210(13), 2887–2902.
  31. Butrym, A., Lacina, P., Rybka, J., Chaszczewska-Markowska, M., Mazur, G., & Bogunia-Kubik, K. (2016). Cereblon and IRF4 Variants Affect Risk and Response to Treatment in Multiple Myeloma. Archivum immunologiae et therapiae experimentalis, 64(Suppl 1), 151–156.
  32. Han, J., Qureshi, A. A., Nan, H., Zhang, J., Song, Y., Guo, Q., & Hunter, D. J. (2011). A germline variant in the interferon regulatory factor 4 gene as a novel skin cancer risk locus. Cancer research, 71(5), 1533–1539.
  33. Duffy, D. L., Iles, M. M., Glass, D., Zhu, G., Barrett, J. H., Höiom, V., Zhao, Z. Z., Sturm, R. A., Soranzo, N., Hammond, C., Kvaskoff, M., Whiteman, D. C., Mangino, M., Hansson, J., Newton-Bishop, J. A., GenoMEL, Bataille, V., Hayward, N. K., Martin, N. G., Bishop, D. T., Montgomery, G. W. (2010). IRF4 variants have age-specific effects on nevus count and predispose to melanoma. American journal of human genetics, 87(1), 6–16.
  34. Dalziel, M., Kolesnichenko, M., das Neves, R. P., Iborra, F., Goding, C., & Furger, A. (2011). Alpha-MSH regulates intergenic splicing of MC1R and TUBB3 in human melanocytes. Nucleic acids research, 39(6), 2378–2392.
  35. Abdel-Malek, Z., Scott, M. C., Suzuki, I., Tada, A., Im, S., Lamoreux, L., Ito, S., Barsh, G., & Hearing, V. J. (2000). The melanocortin-1 receptor is a key regulator of human cutaneous pigmentation. Pigment cell research, 13 Suppl 8, 156–162.
  36. Smit, A. K., Collazo-Roman, M., Vadaparampil, S. T., Valavanis, S., Del Rio, J., Soto, B., Flores, I., Dutil, J., & Kanetsky, P. A. (2020). MC1R variants and associations with pigmentation characteristics and genetic ancestry in a Hispanic, predominately Puerto Rican, population. Scientific reports, 10(1), 7303.
  37. Wendt, J., Mueller, C., Rauscher, S., Fae, I., Fischer, G., & Okamoto, I. (2018). Contributions by MC1R Variants to Melanoma Risk in Males and Females. JAMA dermatology, 154(7), 789–795.
  38. Suzuki, I., Tada, A., Ollmann, M. M., Barsh, G. S., Im, S., Lamoreux, M. L., Hearing, V. J., Nordlund, J. J., & Abdel-Malek, Z. A. (1997). Agouti signaling protein inhibits melanogenesis and the response of human melanocytes to alpha-melanotropin. The Journal of investigative dermatology, 108(6), 838–842.
  39. Kanetsky, P. A., Swoyer, J., Panossian, S., Holmes, R., Guerry, D., & Rebbeck, T. R. (2002). A polymorphism in the agouti signaling protein gene is associated with human pigmentation. American journal of human genetics, 70(3), 770–775.
  40. Taylor, N. J., Reiner, A. S., Begg, C. B., Cust, A. E., Busam, K. J., Anton-Culver, H., Dwyer, T., From, L., Gallagher, R. P., Gruber, S. B., Rosso, S., White, K. A., Zanetti, R., Orlow, I., Thomas, N. E., Rebbeck, T. R., Berwick, M., Kanetsky, P. A., & GEM Study Group (2015). Inherited variation at MC1R and ASIP and association with melanoma-specific survival. International journal of cancer, 136(11), 2659–2667.
  41. Jacobs, L. C., Wollstein, A., Lao, O., Hofman, A., Klaver, C. C., Uitterlinden, A. G., Nijsten, T., Kayser, M., & Liu, F. (2013). Comprehensive candidate gene study highlights UGT1A and BNC2 as new genes determining continuous skin color variation in Europeans. Human genetics, 132(2), 147–158.
  42. Visser, M., Palstra, R. J., & Kayser, M. (2014). Human skin color is influenced by an intergenic DNA polymorphism regulating transcription of the nearby BNC2 pigmentation gene. Human molecular genetics, 23(21), 5750–5762.
  43. Lee, J. S., Choi, Y. M., & Kang, H. Y. (2007). PPAR-gamma agonist, ciglitazone, increases pigmentation and migration of human melanocytes. Experimental dermatology, 16(2), 118–123.
  44. Meylan, P., Pich, C., Winkler, C., Ginster, S., Mury, L., Sgandurra, M., Dreos, R., Frederick, D. T., Hammond, M., Boland, G. M., & Michalik, L. (2021). Low expression of the PPARγ-regulated gene thioredoxin-interacting protein accompanies human melanoma progression and promotes experimental lung metastases. Scientific reports, 11(1), 7847.
  45. Tarafder, A. K., Bolasco, G., Correia, M. S., Pereira, F. J. C., Iannone, L., Hume, A. N., Kirkpatrick, N., Picardo, M., Torrisi, M. R., Rodrigues, I. P., Ramalho, J. S., Futter, C. E., Barral, D. C., & Seabra, M. C. (2014). Rab11b mediates melanin transfer between donor melanocytes and acceptor keratinocytes via coupled exo/endocytosis. The Journal of investigative dermatology, 134(4), 1056–1066.
  46. Moreiras, H., Pereira, F. J. C., Neto, M. V., Bento-Lopes, L., Festas, T. C., Seabra, M. C., & Barral, D. C. (2020). The exocyst is required for melanin exocytosis from melanocytes and transfer to keratinocytes. Pigment cell & melanoma research, 33(2), 366–371.
  47. Wiriyasermkul, P., Moriyama, S., & Nagamori, S. (2020). Membrane transport proteins in melanosomes: Regulation of ions for pigmentation. Biochimica et biophysica acta. Biomembranes, 1862(12), 183318.
  48. Kyoreva, M., Li, Y., Hoosenally, M., Hardman-Smart, J., Morrison, K., Tosi, I., Tolaini, M., Barinaga, G., Stockinger, B., Mrowietz, U., Nestle, F. O., Smith, C. H., Barker, J. N., & Di Meglio, P. (2021). CYP1A1 Enzymatic Activity Influences Skin Inflammation Via Regulation of the AHR Pathway. The Journal of investigative dermatology, 141(6), 1553–1563.e3.
  49. Haarmann-Stemmann, T., Esser, C., & Krutmann, J. (2015). The Janus-Faced Role of Aryl Hydrocarbon Receptor Signaling in the Skin: Consequences for Prevention and Treatment of Skin Disorders. The Journal of investigative dermatology, 135(11), 2572–2576.
  50. Sonti, S., Makino, E. T., Garruto, J. A., Gruber, J. V., Rao, S., & Mehta, R. C. (2013). Efficacy of a novel treatment serum in the improvement of photodamaged skin. International journal of cosmetic science, 35(2), 156–162.
  51. Elfakir, A., Ezzedine, K., Latreille, J., Ambroisine, L., Jdid, R., Galan, P., Hercberg, S., Gruber, F., Malvy, D., Tschachler, E., & Guinot, C. (2010). Functional MC1R-gene variants are associated with increased risk for severe photoaging of facial skin. The Journal of investigative dermatology, 130(4), 1107–1115.
  52. Kang, H. Y., Lee, J. W., Papaccio, F., Bellei, B., & Picardo, M. (2021). Alterations of the pigmentation system in the aging process. Pigment cell & melanoma research, 34(4), 800–813.
  53. Cario M. (2019). How hormones may modulate human skin pigmentation in melasma: An in vitro perspective. Experimental dermatology, 28(6), 709–718.
  54. Need, A. C., & Goldstein, D. B. (2009). Next generation disparities in human genomics: concerns and remedies. Trends in genetics, 25(11), 489–494.
  55. Popejoy, A. B., & Fullerton, S. M. (2016). Genomics is failing on diversity. Nature, 538(7624), 161–164.
  56. MacArthur, J., Bowler, E., Cerezo, M., Gil, L., Hall, P., Hastings, E., Junkins, H., McMahon, A., Milano, A., Morales, J., Pendlington, Z. M., Welter, D., Burdett, T., Hindorff, L., Flicek, P., Cunningham, F., & Parkinson, H. (2017). The new NHGRI-EBI Catalog of published genome-wide association studies (GWAS Catalog). Nucleic acids research, 45(D1), D896–D901.
  57. Mills, M. C., & Rahal, C. (2019). A scientometric review of genome-wide association studies. Communications biology, 2, 9.
  58. Kim, M. S., Patel, K. P., Teng, A. K., Berens, A. J., & Lachance, J. (2018). Genetic disease risks can be misestimated across global populations. Genome biology, 19(1), 179.
  59. Gurdasani, D., Barroso, I., Zeggini, E., & Sandhu, M. S. (2019). Genomics of disease risk in globally diverse populations. Nature reviews. Genetics, 20(9), 520–535.

Most read articles by the same author(s)