Main Article Content

Abstract

Photovoltaic cells are devices that can convert sunlight energy into electrical energy by applying the photovoltaic principle. Indonesia is a country located on the equator that receives a lot of sunlight every year. However, so far the source of electrical energy comes from fossil fuels whose availability is limited. So a material is needed that can improve the performance of photovoltaic cells in producing electrical energy. The purpose of this study was to review the advantages of using Cu-Al electrodes and MgSO4 electrolytes and to find factors that affect the efficiency or performance of photovoltaic cells. This article includes references to articles from 2018 to 2025. The results showed that the use of Cu-Al electrodes and MgSO4 electrolytes can increase cell efficiency. In addition, Cu-Al and MgSO4 are materials that are easy to find and cheap so that they can reduce the cost of making photovoltaic cells compared to other conventional materials that have quite high prices. It is hoped that researchers can utilize this material considering that it has great potential to produce energy in future life.

Keywords

Photovoltaic Cells, Copper-Aluminum Electrodes, Magnesium Sulfate Gel Electrolytes, PV Cell Optimization,Renewable Energy Solutions

Article Details

How to Cite
1.
Yanni F, Rahadian Zainul. Optimization of Photovoltaic Cells Using Copper-Aluminium Electrodes and Magnesium Sulfate-Based Gel Electrolytes. EKSAKTA [Internet]. 2025 Jun. 3 [cited 2025 Jun. 5];26(02):228-3. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/573

References

  1. [1] Syahputra, R., & Soesanti, I. (2021). Renewable energy systems based on micro-hydro and solar photovoltaic for rural areas: A case study in Yogyakarta, Indonesia. Energy reports, 7, 472-490.
  2. [2] Tawalbeh, M., Al-Othman, A., Kafiah, F., Abdelsalam, E., Almomani, F., & Alkasrawi, M. (2021). Environmental impacts of solar photovoltaic systems: A critical review of recent progress and future outlook. Science of The Total Environment, 759, 143528.
  3. [3] Fagiolari, L., Sampò, M., Lamberti, A., Amici, J., Francia, C., Bodoardo, S., & Bella, F. (2022). Integrated energy conversion and storage devices: Interfacing solar cells, batteries and supercapacitors. Energy Storage Materials, 51, 400-434.
  4. [4] Kumar, A., & Kumar, N. (2023). A review on the electrically conductive transparent polymer composites: Materials and applications. Materials Today: Proceedings.
  5. [5] Mao, Q., Liu, Y., & Zhao, Y. (2024). A review on copper alloys with high strength and high electrical conductivity. Journal of Alloys and Compounds, 174456.
  6. [6] Rosli, N. N., Ibrahim, M. A., Ludin, N. A., Teridi, M. A. M., & Sopian, K. (2019). A review of graphene based transparent conducting films for use in solar photovoltaic applications. Renewable and sustainable energy reviews, 99, 83-99.
  7. [7] Wang, Q., Zheng, D., Wang, K., Yang, Q., Zhu, X., Peng, L., ... & Yang, D. (2024). Versatile charge collection materials in perovskite photovoltaics. Nano Energy, 109892.
  8. [8] Said, S. Z., Islam, S. Z., Radzi, N. H., Wekesa, C. W., Altimania, M., & Uddin, J. (2024). Dust impact on solar PV performance: A critical review of optimal cleaning techniques for yield enhancement across varied environmental conditions. Energy Reports, 12, 1121-1141.
  9. [9] Karim, N. A., Mehmood, U., Zahid, H. F., & Asif, T. (2019). Nanostructured photoanode and counter electrode materials for efficient Dye-Sensitized Solar Cells (DSSCs). Solar Energy, 185, 165-188.
  10. [10] Rathore, M., & Dalvi, A. (2019). Electrical characterization of PVA-MgSO4 and PVA-Li2SO4 polymer salt composite electrolytes. Materials Today: Proceedings, 10, 106-111.
  11. [11] Yang, H., Wang, C., Tong, L., Yin, S., Wang, L., & Ding, Y. (2024). Investigation of thermochemical energy storage materials for building heating applications: Desorption behaviors of MgSO4• 7H2O–silica gel composite. Chemical Engineering Journal, 502, 157859.
  12. [12] Dos Santos, S. A. A., Torres, J. P. N., Fernandes, C. A., & Lameirinhas, R. A. M. (2021). The impact of aging of solar cells on the performance of photovoltaic panels. Energy Conversion and Management: X, 10, 100082.
  13. [13] Mubarrat, M., Mashfy, M. M., Farhan, T., & Ehsan, M. M. (2023). Research advancement and potential prospects of thermal energy storage in concentrated solar power application. International Journal of Thermofluids, 20, 100431.
  14. [14] Shah, M. Y., Lu, Y., Mushtaq, N., Yousaf, M., Akbar, N., Xia, C., ... & Zhu, B. (2023). Semiconductor-membrane fuel cell (SMFC) for renewable energy technology. Renewable and Sustainable Energy Reviews, 185, 113639.
  15. [15] Islami, M. S., Urmee, T., & Kumara, I. N. S. (2021). Developing a framework to increase solar photovoltaic microgrid penetration in the tropical region: A case study in Indonesia. Sustainable Energy Technologies and Assessments, 47, 101311.
  16. [16] Brancato, V., Calabrese, L., Palomba, V., Frazzica, A., Fullana-Puig, M., Solé, A., & Cabeza, L. F. (2018). MgSO4•7H2O filled macro cellular foams: An innovative composite sorbent for thermo-chemical energy storage applications for solar buildings. Solar Energy, 173(August), 1278–1286.
  17. [17] Amalraj, S., & Michael, P. A. (2019). Synthesis and characterization of Al2O3 and CuO nanoparticles into nanofluids for solar panel applications. Results in Physics, 15(March), 102797.
  18. [18] Kharbanda, J. S., Yadav, S. K., Soni, V., & Kumar, A. (2020). Modeling of heat transfer and fluid flow in epsom salt (MgSO4.7H2O) dissociation for thermochemical energy storage. Journal of Energy Storage, 31(August), 101712.
  19. [19] Kumar, V., Kaphle, A., Rathnasekara, R., Neupane, G. R., & Hari, P. (2024). Role of Al doping in morphology and interface of Al-doped ZnO/CuO film for device performance of thin film-based heterojunction solar cells. Hybrid Advances, 5, 100148.
  20. [20] Rao, V. S., Cheruku, R., Krishna, V. B. M., Gireesha, B., Rao, K. M., Habila, M. A., & Han, S. S. (2024). Enhancing solar cell efficiency: In-situ polymerization with Cu2O@CuO core-shell nanostars. Results in Engineering, 24(August), 103222.
  21. [21] Zubair, M., & Abbas, G. (2025). Optimization of bifacial PV panels in a residential sector for maximum economic benefits based on load profile. Energy Reports, 13(May), 5252–5265.
  22. [22] Kumar, N. S., Barik, D., Tudu, K., Praveenkumar, S., Dennison, M. S., & Ibrahim, T. K. (2025). Thermodynamic study of improved cooling in solar photovoltaic cells using nanofluids with graphite-doped titanium dioxide and aluminum oxide. Case Studies in Thermal Engineering, 69(February), 105969.
  23. [23] Alansi, A. M., Qahtan, T. F., Al Abass, N., Al-Qunaibit, M., & Saleh, T. A. (2022). In-situ sunlight-driven tuning of photo-induced electron-hole generation and separation rates in bismuth oxychlorobromide for highly efficient water decontamination under visible light irradiation. Journal of Colloid and Interface Science, 614, 58-65.
  24. [24] Choi, B. N., Seo, J. Y., Kim, B., Kim, Y. S., & Chung, C. H. (2020). Electro-deposition of the lithium metal anode on dendritic copper current collectors for lithium battery application. Applied Surface Science, 506, 144884.
  25. [25] González-Campos, J. B., Pérez-Nava, A., Valle-Sánchez, M., & Delgado-Rangel, L. H. (2024). Deep eutectic solvents applications aligned to 2030 United Nations Agenda for Sustainable Development. Chemical Engineering and Processing-Process Intensification, 199, 109751.
  26. [26] Al-Ezzi, A. S., & Ansari, M. N. M. (2022). Photovoltaic Solar Cells: A Review. Applied System Innovation, 5(4), 1–17.
  27. [27] Singh, B. P., Goyal, S. K., & Kumar, P. (2021). Solar PV cell materials and technologies: Analyzing the recent developments. Materials Today: Proceedings, 43, 2843-2849.
  28. [28] Zhao, H., Zhao, Z., Qu, J., Chen, X., Zhou, F., Xie, H., ... & Yin, H. (2021). A combined oxidation and salt-thermal approach to converting copper scraps to copper oxides as energy storage materials. Journal of Cleaner Production, 320, 128870.
  29. [29] Hajji, M., Ajili, M., Jebbari, N., & Kamoun, N. T. (2023). Photocatalytic performance and solar cell applications of coupled semiconductor CuO–ZnO sprayed thin films: Coupling effect between oxides. Optical Materials, 140, 113798.
  30. [30] Lah, N. A. C. (2023). Tunable functionality of pure nano Cu-and Cu-based oxide flexible conductive thin film with superior surface modification. Surfaces and Interfaces, 38, 102819.
  31. [31] Mobarak, M. B., Hossain, M. S., Chowdhury, F., & Ahmed, S. (2022). Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arabian Journal of Chemistry, 15(10), 104117.
  32. [32] Gherasim, C., Pascariu, P., Asandulesa, M., Dobromir, M., Doroftei, F., Fifere, N., ... & Airinei, A. (2022). Copper oxide nanostructures: Preparation, structural, dielectric and catalytic properties. Ceramics International, 48(17), 25556-25568.
  33. [33] Kant, N., & Singh, P. (2022). Review of next generation photovoltaic solar cell technology and comparative materialistic development. Materials Today: Proceedings, 56, 3460-3470.
  34. [34] Dimngaihvungi, E., Singh, M., Pani, B., & Singh, A. K. (2023). Silver and copper nanowire-based nanocomposite for transparent electrodes: deposition methods and applications in solar cells. Composite Interfaces, 30(12), 1449-1481.
  35. [35] Chen, S. H., Chan, S. H., Lin, Y. T., & Wu, M. C. (2019). Enhanced power conversion efficiency of perovskite solar cells based on mesoscopic Ag-doped TiO2 electron transport layer. Applied Surface Science, 469, 18-26.
  36. [36] Zhang, W., Lu, J., & Guo, Z. (2021). Challenges and future perspectives on sodium and potassium ion batteries for grid-scale energy storage. Materials Today, 50, 400-417.
  37. [37] Golshani, Z., Arjmand, F., Maghsoudi, S., & Hosseini, S. M. A. (2023). Fe2O3–NiO doped carbon counter electrode for high-performance and long-term stable photovoltaic perovskite solar cells. Journal of Materials Research and Technology, 23, 2612-2625.
  38. [38] Manikkoth, M., Kannan, S. K., Gladis, J. M., & Rajan, T. P. D. (2024). Aluminium alloys and composites for electrochemical energy systems. Progress in Materials Science, 101322.
  39. [39] Moradi, M., Vasseghian, Y., Khataee, A., Kobya, M., Arabzade, H., & Dragoi, E. N. (2020). Service life and stability of electrodes applied in electrochemical advanced oxidation processes: a comprehensive review. Journal of Industrial and Engineering Chemistry, 87, 18-39.
  40. [40] Agrawal, A., Siddiqui, S. A., Soni, A., & Sharma, G. D. (2022). Advancements, frontiers and analysis of metal oxide semiconductor, dye electrolyte and counter electrode of dye sensitized solar cell. Solar Energy, 233, 378-407.
  41. [41] Ünlü, B., Türk, S., & Özacar, M. (2023). Novel anti-freeze and self-adhesive gellan gum/P3HT/LiCl based gel electrolyte for quasi solid dye sensitized solar cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 674, 131869.
  42. [42] Nabgan, W., Alqaraghuli, H., Owgi, A. H. K., Ikram, M., Vo, D. V. N., Jalil, A. A., ... & Medina, F. (2024). A review on the design of nanostructure-based materials for photoelectrochemical hydrogen generation from wastewater: Bibliometric analysis, mechanisms, prospective, and challenges. International Journal of Hydrogen Energy, 52, 622-663.
  43. [43] Porthault, H., Piana, G., Duffault, J. M., & Franger, S. (2020). Influence of ionic interactions on lithium diffusion properties in ionic liquid-based gel polymer electrolytes. Electrochimica Acta, 354, 136632.
  44. [44] Shoair, A. G. F., Shanab, M. M. H., Momen, A. A., & Makhlouf, M. M. (2024). Optimization of the structural, optical, and photovoltaic characteristics of a novel ruthenium (III) complex as a photosensitizer for solar cells. Optical Materials, 154, 115646.
  45. [45] Lü, X., Wu, Y., Lian, J., Zhang, Y., Chen, C., Wang, P., & Meng, L. (2020). Energy management of hybrid electric vehicles: A review of energy optimization of fuel cell hybrid power system based on genetic algorithm. Energy Conversion and Management, 205, 112474.