Main Article Content

Abstract

The wave equation on a string is an example of a partial differential equation problem. There are several methods for finding the solution to the wave equation on a string. The solution method will differ depending on definition of the function's domain. This study aims to determine the form of solving the wave equation on the strings and the results of the analysis of the wave motion that depends on the number of boundary conditions, using a particular solution method, namely the Fourier transform method. The boundary conditions used are Dirichlet boundary conditions. The Fourier transform method is used to obtain the solution of the wave equation on the string. The Fourier transform will transform the wave equation on the string and get the solution form of the wave equation on the string by applying the inverse Fourier transform. The results of this study obtained the same form of solution for each state from the wave equation on strings, namely in the form of the D'Alembert solution for the wave equation. As well, the movement of the wave will form a periodic solution by period , with a different form of deviation occurring at each point  for each value .

Keywords

Partial differential equation wave equation Fourier Transform Dirichlet condition

Article Details

How to Cite
1.
Amelia, Rusyaman E, Kusuma DA, Azril. Solving Partial Differential Equations for Wave Equation Problem on Strings by Applying the Fourier Transform. EKSAKTA [Internet]. 2023Dec.30 [cited 2025Jan.14];24(04):574-87. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/346

References

  1. Hsu, S. B., & Chen, K. C. (2022). Ordinary differential equations with applications (Vol. 23). World scientific.
  2. Evans, L. C. (2022). Partial differential equations (Vol. 19). American Mathematical Society.
  3. Patil, D., & Raundal, N. (2022). Applications of double general integral transform for solving boundary value problems in partial differential equations. International Advanced Research Journal in Science, Engineering and Technology, 9(6), 735-739.
  4. Kaltenbacher, B., & Rundell, W. (2023). Inverse Problems for Fractional Partial Differential Equations (Vol. 230). American Mathematical Society.
  5. Goswami, S., Kontolati, K., Shields, M. D., & Karniadakis, G. E. (2022). Deep transfer learning for partial differential equations under conditional shift with DeepONet. arXiv preprint arXiv:2204.09810, 55.
  6. Abdulazeez, S. T., & Modanli, M. (2023). Analytic solution of fractional order Pseudo-Hyperbolic Telegraph equation using modified double Laplace transform method. International Journal of Mathematics and Computer in Engineering.
  7. EL-Sagheer, R. M., Abu-Youssef, S. E., Sadek, A., Omar, K. M., & Etman, W. B. (2022). Characterizations and testing NBRUL class of life distributions based on Laplace transform technique. J. Stat. Appl. Probab, 11, 1-14.
  8. Shah, N. A., Dassios, I., El-Zahar, E. R., & Chung, J. D. (2022). An efficient technique of fractional-order physical models involving ρ-laplace transform. Mathematics, 10(5), 816.
  9. Salsa, S., & Verzini, G. (2022). Partial differential equations in action: from modelling to theory (Vol. 147). Springer Nature.
  10. Rodriguez-Torrado, R., Ruiz, P., Cueto-Felgueroso, L., Green, M. C., Friesen, T., Matringe, S., & Togelius, J. (2022). Physics-informed attention-based neural network for hyperbolic partial differential equations: application to the Buckley–Leverett problem. Scientific reports, 12(1), 7557.
  11. Wong, M. W. (2022). Partial differential equations: topics in fourier analysis. CRC Press.
  12. Jess, D. B., Jafarzadeh, S., Keys, P. H., Stangalini, M., Verth, G., & Grant, S. D. (2023). Waves in the lower solar atmosphere: the dawn of next-generation solar telescopes. Living Reviews in Solar Physics, 20(1), 1.
  13. Souayeh, B., Abro, K. A., Siyal, A., Hdhiri, N., Hammami, F., Al-Shaeli, M., ... & Alsheddi, T. (2022). Role of copper and alumina for heat transfer in hybrid nanofluid by using Fourier sine transform. Scientific Reports, 12(1), 11307.
  14. May, M. M., & Rehfeld, K. (2022). Negative emissions as the new frontier of photoelectrochemical CO2 reduction. Advanced Energy Materials, 12(21), 2103801.
  15. Botas, A. M. (2022). New Frontiers in Novel Optical Materials and Devices. Coatings, 12(6), 856.
  16. Ermolaev, A. V., Sheveleva, A., Genty, G., Finot, C., & Dudley, J. M. (2022). Data-driven model discovery of ideal four-wave mixing in nonlinear fibre optics. Scientific Reports, 12(1), 12711.
  17. Brunton, S. L., & Kutz, J. N. (2022). Data-driven science and engineering: Machine learning, dynamical systems, and control. Cambridge University Press.
  18. Ghadami, A., & Epureanu, B. I. (2022). Data-driven prediction in dynamical systems: recent developments. Philosophical Transactions of the Royal Society A, 380(2229), 20210213.
  19. Ren, Z., Han, X., Yu, X., Skjetne, R., Leira, B. J., Sævik, S., & Zhu, M. (2023). Data-driven simultaneous identification of the 6DOF dynamic model and wave load for a ship in waves. Mechanical Systems and Signal Processing, 184, 109422.
  20. Zhang, J., Zhao, X., Jin, S., & Greaves, D. (2022). Phase-resolved real-time ocean wave prediction with quantified uncertainty based on variational Bayesian machine learning. Applied Energy, 324, 119711.
  21. Takamoto, M., Praditia, T., Leiteritz, R., MacKinlay, D., Alesiani, F., Pflüger, D., & Niepert, M. (2022). PDEBench: An extensive benchmark for scientific machine learning. Advances in Neural Information Processing Systems, 35, 1596-1611.
  22. Baleanu, D., Karaca, Y., Vázquez, L., & Macías-Díaz, J. E. (2023). Advanced fractional calculus, differential equations and neural networks: Analysis, modeling and numerical computations. Physica Scripta, 98(11), 110201.
  23. Chahlaoui, Y., Ali, A., Ahmad, J., & Javed, S. (2023). Dynamical behavior of chaos, bifurcation analysis and soliton solutions to a Konno-Onno model. PLoS One, 18(9), e0291197.
  24. Shen, L. (2022). Parallel Solving Method for the Variable Coefficient Nonlinear Equation. International Journal of Circuits, Systems and Signal Processing, 16, 264-271.
  25. Arunachalam, K. P., & Henderson, J. H. (2023). Experimental study on mechanical strength of vibro-compacted interlocking concrete blocks using image processing and microstructural analysis. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-19.
  26. Soofastaei, A. (Ed.). (2023). Numerical Simulation: Advanced Techniques for Science and Engineering. BoD–Books on Demand.
  27. Zhao, J., Han, X., Ouyang, M., & Burke, A. F. (2023). Specialized deep neural networks for battery health prognostics: Opportunities and challenges. Journal of Energy Chemistry.
  28. George, A. S., George, A. H., & Martin, A. G. (2023). Quantum-Centric Supercomputing: Ambitious Plan to Solve the World's Biggest Problems. Partners Universal International Research Journal, 2(2), 68-88.
  29. Petö, M., Garhuom, W., Duvigneau, F., Eisenträger, S., Düster, A., & Juhre, D. (2022). Octree-based integration scheme with merged sub-cells for the finite cell method: Application to non-linear problems in 3D. Computer Methods in Applied Mechanics and Engineering, 401, 115565.
  30. Reddy, M. V., Hemasunder, B., Ramana, S. V., Babu, P. R., Thejasree, P., & Joseph, J. (2023). State of art on FEM approach in inverse heat transfer problems for different materials. Materials Today: Proceedings.
  31. Agrawal, M. K., Kumari, T. S., Maan, P., Pratap, B., Mashkour, M. S., & Sharma, V. (2023). Coupled Multiphysics Simulation using FEA for Complex Fluid-Structure Interaction Problems. In E3S Web of Conferences (Vol. 430, p. 01116). EDP Sciences.
  32. Zill, D. G. (2018). Differential Equations with Boundary-Value Problems (9E ed.). Cengange Learning.
  33. Khater, M. M., Xia, Y., Zhang, X., & Attia, R. A. (2023). Waves propagation of optical waves through nonlinear media; modified Kawahara equation. Results in Physics, 52, 106796.
  34. Ahmad, J., Mustafa, Z., & Rezazadeh, H. (2023). New analytical wave structures for some nonlinear dynamical models via mathematical technique. University of Wah Journal of Science and Technology (UWJST), 7(1), 51-75.
  35. Khater, M. M. (2023). Soliton propagation under diffusive and nonlinear effects in physical systems;(1+ 1)–dimensional MNW integrable equation. Physics Letters A, 128945.
  36. Rautenbach, C., Trenham, C., Benn, D., Hoeke, R., & Bosserelle, C. (2022). Computing efficiency of XBeach hydro-and wave dynamics on Graphics Processing Units (GPUs). Environmental Modelling & Software, 157, 105532.
  37. Negero, N. T. (2014). Fourier Transform Methods for Partial Differential Equations. International Journal of Partial Differential Equations and Applications, 2(3), 44–57.
  38. de Jesus, V. L. B., Haubrichs, C., de Oliveira, A. L., & Sasaki, D. G. G. (2022). Video analysis of a massive coiled spring transverse oscillations described by Fourier series. European Journal of Physics, 43(6), 065001.
  39. Ringers, C., Bialonski, S., Ege, M., Solovev, A., Hansen, J. N., Jeong, I., ... & Jurisch-Yaksi, N. (2023). Novel analytical tools reveal that local synchronization of cilia coincides with tissue-scale metachronal waves in zebrafish multiciliated epithelia. Elife, 12, e77701.
  40. Paunikar, S., & Gopalakrishnan, S. (2022). Wave propagation in adhesively bonded metallic and composite lap joints modelled through spectrally formulated elastically coupled double beam element. International Journal of Mechanics and Materials in Design, 18(2), 365-393.
  41. Ahmad, Z., Ahmad, M., & Khitab, U. (2023). Magnetized Quantum Plasma Half space, Analytical study of Electrostatic surface waves and their dispersion relation.
  42. Yessenov, M., Hall, L. A., Schepler, K. L., & Abouraddy, A. F. (2022). Space-time wave packets. Advances in Optics and Photonics, 14(3), 455-570.
  43. Mork, N., Kuchibhatla, S. A., Leamy, M. J., & Fronk, M. D. (2023). Experimental realization of an additively manufactured monatomic lattice for studying wave propagation. American Journal of Physics, 91(1), 56-63.
  44. Kumar, A., & Kapuria, S. (2023). Wave packet enriched finite elements for thermo-electro-elastic wave propagation problems with discontinuous wavefronts. Journal of Thermal Stresses, 1-31.
  45. Sinaga, M. P., Pandara, D. P., Nyuswantoro, U. I., Nasution, B., & Siagian, R. C. (2023). Visualizations and Analyses of Quantum Behavior, Spacetime Curvature, and Metric Relationships in Relativistic Physics. Jurnal Neutrino: Jurnal Fisika dan Aplikasinya, 16(1), 37-52.
  46. Lian, Y., Jiang, L., Sun, J., Zhou, J., & Zhou, Y. (2023). Ultrafast quasi-three-dimensional imaging. International Journal of Extreme Manufacturing, 5(4), 045601.
  47. Lian, Y., Jiang, L., Sun, J., Zhou, J., & Zhou, Y. (2023). Ultrafast quasi-three-dimensional imaging. International Journal of Extreme Manufacturing, 5(4), 045601.
  48. Yu, X., Qin, R., & Deng, M. (2022). New insights into topographically feature guided waves (FGW) propagation in non-uniform elastic waveguides. Wave Motion, 109, 102866.
  49. Kranzl, F., Birnkammer, S., Joshi, M. K., Bastianello, A., Blatt, R., Knap, M., & Roos, C. F. (2023). Observation of magnon bound states in the long-range, anisotropic heisenberg model. Physical Review X, 13(3), 031017.