Main Article Content


Reports of the chemical constituents of Andrographis paniculata showed that this plant produced various secondary metabolites with antibacterial activity. Further exploration of bioactive compounds from A. paniculata can also be conducted by analyzing its endophytic fungi. Isolation of endophytic fungi from the twig of A. paniculata obtained three isolates of endophytic fungi. One of the isolates, RS-2, was fermented on rice media and extracted with ethyl acetate to give the EtOAc extract. The EtOAc extract from fungus RS-2 was analyzed for their antibacterial and phytochemical screening. The results exhibiting the EtOAc extract of fungus RS-2 has activity to inhibite bacterial growth. Overall, the study of the antibacterial activity of endophytic fungus obtained from the twig of A. paniculata was firstly carried out in this study


Andrographis paniculata antibacterial endophytic fungus twig

Article Details

How to Cite
Anshar Al Khairi V, Etika SB, Suryelita S, Ulfah M, Riga R. Study of The Antibacterial Activity of Endophytic Fungus That Colonize With The Twig of Andrographis paniculata . Eksakta [Internet]. 2021May13 [cited 2021Jun.12];22(2):137-44. Available from:


  1. R. Riga, N. Happyana, and E. H. Hakim. (2019). “Chemical constituents of Pestalotiopsis microspora HF 12440” J. Appl. Pharm. Sci., vol. 9, no. 1, doi: 10.7324/JAPS.2019.90116.
  2. M. C. Manganyi and C. N. Ateba. (2020). “Untapped potentials of endophytic fungi: A review of novel bioactive compounds with biological applications” Microorganisms, vol. 8, no. 12, pp. 1–25, doi: 10.3390/microorganisms8121934.
  3. Y. Li, C. Lu, Y. Huang, Y. Li, and Y. Shen. (2012). “Cytochalasin H2, a new cytochalasin, isolated from the endophytic fungus Xylaria sp. A23” Rec. Nat. Prod., vol. 6, no. 2, pp. 121–126.
  4. H. Yu, L. Zhang, L. Li, C. Zheng, L. Guo, W. Li, P. Sun, and L. Qin. (2010). “Recent developments and future prospects of antimicrobial metabolites produced by endophytes” Microbiol. Res., vol. 165, no. 6, pp. 437–449, doi: 10.1016/j.micres.2009.11.009.
  5. M. Jia, L. Chen, H. Xin, C. Zheng, K. Rahman, T. Han, and L. Qin. (2016). “A friendly relationship between endophytic fungi and medicinal plants: A systematic review” Front. Microbiol., vol. 7, no. JUN, pp. 1–14, doi: 10.3389/fmicb.2016.00906.
  6. M. Munawar, M. Muharni, and I. Ivantri. (2015). “Chemical constituen from an endophytic fungus Aspergillus sp (SbD5) isolated from sambiloto (Andrographis paniculata Nees)” Microbiol. Indones., vol. 9, no. 2, pp. 82–88, doi: 10.5454/mi.9.2.5.
  7. R. H. Patil, M. P. Patil, and V. L. Maheshwari. (2016). “Bioactive secondary metabolites from endophytic fungi: A review of biotechnological production and their potential applications” Stud. Nat. Prod. Chem., vol. 49, pp. 189–205, doi: 10.1016/B978-0-444-63601-0.00005-3.
  8. N. Rustamova, K. Bozorov, T. Efferth, and A. Yili. (2020). “Novel secondary metabolites from endophytic fungi: synthesis and biological properties” Phytochem. Rev., vol. 19, no. 2, pp. 425–448, doi: 10.1007/s11101-020-09672-x.
  9. S. Gupta, P. Chaturvedi, M. G. Kulkarni, and J. Van Staden. (2020). “A critical review on exploiting the pharmaceutical potential of plant endophytic fungi” Biotechnol. Adv., vol. 39, p. 107462, doi: 10.1016/j.biotechadv.2019.107462.
  10. H. Ma et al. (2019). “A new diketopiperazine from an endophytic fungus Aspergillus aculeatus F027” Nat. Prod. Res., vol. 0, no. 0, pp. 1–6, doi: 10.1080/14786419.2019.1677652.
  11. S. Sarsaiya, J. Shi, and J. Chen. (2019). “A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities” Bioengineered, vol. 10, no. 1, pp. 316–334, doi: 10.1080/21655979.2019.1644854.
  12. R. Riga, N. Happyana, A. Quentmeier, C. Zammarelli, O. Kayser, and E. H. Hakim. (2019). “Secondary metabolites from Diaporthe lithocarpus isolated from Artocarpus heterophyllus” Nat. Prod. Res., doi: 10.1080/14786419.2019.1672685.
  13. J. J. Solomon Jeeva. (2014). “Andrographis paniculata: A review of its traditional uses, phytochemistry and pharmacology” Med. Aromat. Plants, vol. 03, no. 04, doi: 10.4172/2167-0412.1000169.
  14. K. Karthik, S. Dhanuskodi, C. Gobinath, S. Prabukumar, and S. Sivaramakrishnan. (2017). “Andrographis paniculata extract mediated green synthesis of CdO nanoparticles and its electrochemical and antibacterial studies” J. Mater. Sci. Mater. Electron., vol. 28, no. 11, pp. 7991–8001, doi: 10.1007/s10854-017-6503-8.
  15. S. Gajalakshmi, V. Iswarya, R. Ashwini, M. Bhuvaneshwari, S. Mythili, and A. Sathiavelu. (2012). “Secondary metabolite production by endophytic fungi isolated from Andrographis paniculata” vol. 5, no. 3, pp. 12–17,
  16. S. Wilson Goveas, R. Madtha, S. Kiran Nivas, and L. D’Souza. (2011). “Isolation of endophytic fungi from Coscinium fenestratum- a red listed endangered medicinal plant” EurAsian J. Biosci., vol. 53, no. August, pp. 48–53, doi: 10.5053/ejobios.2011.5.0.6.
  17. M. R. Zaidan, A. Noor Rain, A. R. Badrul, A. Adlin, A. Norazah, and I. Zakiah. (2005). “In vitro screening of five local medicinal plants for antibacterial activity using disc diffusion method” Trop. Biomed., vol. 22, no. 2, pp. 165–170.
  18. H. Ali, M. T. Khyber, and M. S. Khyber. (2011). “Antimicrobial potentials of Eclipta alba by disc diffusion method production of biomass and medicinal metabolites through in-vitro cultures in ajuga bracteosa view project establishment of plant in-vitro cultures in Artimisia species for production of industrially important green solvents view project” Artic. AFRICAN J. Biotechnol., vol. 10, no. 39, pp. 7658–7667, doi: 10.5897/AJB11.454.
  19. A. M. Calvo, R. A. Wilson, J. W. Bok, and N. P. Keller. (2002). “Relationship between secondary metabolism and fungal development” Microbiol. Mol. Biol. Rev., vol. 66, no. 3, pp. 447 LP – 459, doi: 10.1128/MMBR.66.3.447-459.2002.
  20. N. P. Keller. (2019). “Fungal secondary metabolism: regulation, function and drug discovery” Nat. Rev. Microbiol., vol. 17, no. 3, pp. 167–180, doi: 10.1038/s41579-018-0121-1.
  21. R. Haghgoo, M. Mehran, E. Afshari, H. F. Zadeh, and M. Ahmadvand. (2017). “Antibacterial effects of different concentrations of Althaea officinalis root extract versus 0.2% chlorhexidine and penicillin on Streptococcus mutans and Lactobacillus (in vitro)” pp. 1–6, doi: 10.4103/jispcd.JISPCD.
  22. L. Othman, A. Sleiman, and R. M. Abdel-Massih. (2019). “Antimicrobial activity of polyphenols and alkaloids in middle eastern plants” Front. Microbiol., vol. 10, no. MAY, doi: 10.3389/fmicb.2019.00911.
  23. S. Kursia, R. Aksa, and M. M. Nolo. (2018). “Potensi antibakteri isolat jamur endofit dari daun kelor (Moringa oleifera Lam.)” Pharmauho J. Farm. Sains, dan Kesehat., vol. 4, no. 1, pp. 30–33, doi: 10.33772/pharmauho.v4i1.4631.
  24. L. Bouarab-Chibane et al. (2019). “Antibacterial properties of polyphenols: Characterization and QSAR (Quantitative structure-activity relationship) models” Front. Microbiol., vol. 10, doi: 10.3389/fmicb.2019.00829.
  25. A. Pandey and P. S. Negi. (2018). “Phytochemical composition, in vitro antioxidant activity and antibacterial mechanisms of Neolamarckia cadamba fruits extracts” Nat. Prod. Res., vol. 32, no. 10, pp. 1189–1192, doi: 10.1080/14786419.2017.1323209.