Main Article Content
Abstract
Cr(VI) is a toxic, mutagenic, and carcinogenic metal. This heavy metal have effect harmful on organism and the environment. In this study, an electroanalytic approach was improved for detection of the Cr(VI) using a pencil lead electrode modified with gold thin layer by cyclic voltammetry. Gold thin layer was electrodeposited on the pencil lead electrode surface with potential-sweeping technique at scan of potential from 1.2 V to 0 V. Since the Cr(VI) species depends on the pH, effect of supporting electrolytes matrix at various pH were investigated. It was found that Cr(VI) gave a reduction peak with a peak potential of 0.35 V vs Ag/AgCl in cyclic voltammogram with 0.1M HClO4 as supporting electrolyte. The calibration curve for Cr(VI) at gold thin layer modified pencil lead electrode shows linearity in range of 5 µM to 100 µM with a detection limit of 2.3 µM achieved.
Keywords
Article Details
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- B. Liu, L. Lu, M. Wang, and Y. Zi. (2008). A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI), J. Chem. Sci., vol. 120, no. 5, pp. 493–498, doi: 10.1007/s12039-008-0077-1.
- T. K. Sari, F. Takahashi, J. Jin, R. Zein, and E. Munaf. (2018). Electrochemical determination of chromium(VI) in river water with gold nanoparticles-graphene nanocomposites modified electrodes, Anal. Sci., vol. 34, no. 2, pp. 155–160, doi: 10.2116/analsci.34.155.
- V. Klatt and J. Kunze. (2009). The determination of chromium VI in wastewater using GFAAS after extraction as diphenylcarbazide complex,” At. Spectrosc., vol. 30, no. 6, pp. 185–190.
- A. Nawrocka and J. Szkoda. (2012). Determination of chromium in biological material by electrothermal atomic absorption spectrometry method, Bull. Vet. Inst. Pulawy, vol. 56, no. 4, pp. 585–589, doi: 10.2478/v10213-012-0103-4.
- P. Nagaraj, N. Aradhana, A. Shivakumar, A. K. Shrestha, and A. K. Gowda. (2009). Spectrophotometric method for the determination of chromium (VI) in water samples, Environ. Monit. Assess., vol. 157, no. 1–4, pp. 575–582, doi: 10.1007/s10661-008-0557-2.
- K. K. Onchoke and S. A. Sasu. (2016). Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA), Adv. Environ. Chem., vol. 2016, no. Iii, pp. 1–10, doi: 10.1155/2016/3468635.
- F. Petrucci and O. Senofonte (2015). Determination of Cr(vi) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass spectrometry (DRC-ICP-MS), Anal. Methods, vol. 7, no. 12, pp. 5269–5274, doi: 10.1039/c4ay03042g.
- A. Drinčić, T. Zuliani, J. Ščančar, and R. Milačič (2018) Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry, Sci. Total Environ., vol. 637–638, pp. 1286–1294, doi: 10.1016/j.scitotenv.2018.05.112.
- M. Abdul Aziz and A. N. Kawde (2013). Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine, Talanta, vol. 115, pp. 214–221, doi: 10.1016/j.talanta.2013.04.038.
- R. T. Kachoosangi and R. G. Compton (2013). Voltammetric determination of Chromium(VI) using a gold film modified carbon composite electrode, Sensors Actuators, B Chem., vol. 178, pp. 555–562, doi: 10.1016/j.snb.2012.12.122.
- S. Wyantuti, Y. W. Hartati, C. Panatarani, and R. Tjokronegoro. (2015). Cyclic Voltammetric Study of Chromium (VI) and Chromium (III) on the Gold Nanoparticles-Modified Glassy Carbon Electrode, Procedia Chem., vol. 17, no. Vi, pp. 170–176, doi: 10.1016/j.proche.2015.12.109.
- C. Santhosh, M. Saranya, R. Ramachandran, S. Felix, V. Velmurugan, and A. Nirmala Grace, 2014, Graphene/gold nanocomposites-based thin films as an enhanced sensing platform for voltammetric detection of Cr(VI) ions, J. Nanotechnol., vol. 2014, doi: 10.1155/2014/304526.
- H. Du Nguyen, T. T. L. Nguyen, K. M. Nguyen, T. A. T. Tran, A. M. Nguyen, and Q. H. Nguyen. (2015). Determination of ppt Level Chromium(VI) Using the Gold Nano-Flakes Electrodeposited on Platinum Rotating Disk Electrode and Modified with 4-Thiopyridinium, Am. J. Anal. Chem., vol. 06, no. 05, pp. 457–467, doi: 10.4236/ajac.2015.65045.
- O. Domínguez-Renedo, L. Ruiz-Espelt, N. García-Astorgano, and M. J. Arcos-Martínez. (2008). Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes, Talanta, vol. 76, no. 4, pp. 854–858, doi: 10.1016/j.talanta.2008.04.036.
- W. Jin, G. Wu, and A. Chen. (2014). Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays, Analyst, vol. 139, no. 1, pp. 235–241, doi: 10.1039/c3an01614e.
- M. C. Tsai and P. Y. Chen (2008). Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media, Talanta, vol. 76, no. 3, pp. 533–539, doi: 10.1016/j.talanta.2008.03.043.
- L. Liv and N. Nakiboǧlu. (2016). Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode, Turkish J. Chem., vol. 40, no. 3, pp. 412–421, doi: 10.3906/kim-1507-64.
- E. Alipour, M. R. Majidi, A. Saadatirad, S. M. Golabi, and A. M. Alizadeh. (2013). Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode, Electrochim. Acta, vol. 91, pp. 36–42, doi: 10.1016/j.electacta.2012.12.079.
- P. H. C. P. Tavares and P. J. S. Barbeira. (2008). Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes, J. Appl. Electrochem., vol. 38, no. 6, pp. 827–832, doi: 10.1007/s10800-008-9518-2.
- I. G. David et al., (2015). Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode, Food Chem., vol. 173, pp. 1059–1065, doi: 10.1016/j.foodchem.2014.10.139.
- Z. Q. Gong, A. N. A. Sujari, and S. Ab Ghani (2012). Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes, Electrochim. Acta, vol. 65, pp. 257–265, doi: 10.1016/j.electacta.2012.01.057.
- J. Kariuki, E. Ervin, and C. Olafson. (2015). Development of a novel, low-cost, disposable wooden pencil graphite electrode for use in the determination of antioxidants and other biological compounds, Sensors (Switzerland), vol. 15, no. 8, pp. 18887–18900, doi: 10.3390/s150818887.
- I. G. David, D. E. Popa, and M. Buleandra. (2017). Pencil graphite electrodes: A versatile tool in electroanalysis, J. Anal. Methods Chem., vol. 2017, no. Cv, doi: 10.1155/2017/1905968.
- D. L. Vu, S. Žabčíková, L. Červenka, B. Ertek, and Y. Dilgin (2015). Sensitive voltammetric determination of natural flavonoid quercetin on a disposable graphite lead, Food Technol. Biotechnol., vol. 53, no. 4, pp. 379–384, doi: 10.17113/ftb.53.04.15.4176.
- T. K. Sari, J. Jin, R. Zein, and E. Munaf. (2017). Anodic Stripping Voltammetry for the Determination of Trace Cr ( VI ) with Graphite / Styrene-Acrylonitrile Copolymer Composite Electrodes, vol. 33, no. July, pp. 801–806.