Main Article Content


Cr(VI) is a toxic, mutagenic, and carcinogenic metal. This heavy metal have effect harmful on organism and the environment. In this study, an electroanalytic approach was improved for detection of the Cr(VI) using a pencil lead electrode modified with gold thin layer by cyclic voltammetry. Gold thin layer was electrodeposited on the pencil lead electrode surface with potential-sweeping technique at scan of potential from 1.2 V to 0 V. Since the Cr(VI) species depends on the pH, effect of supporting electrolytes matrix at various pH were investigated. It was found that Cr(VI) gave a reduction peak with a peak potential of 0.35 V vs Ag/AgCl in cyclic voltammogram with 0.1M HClO4 as supporting electrolyte. The calibration curve for Cr(VI) at gold thin layer modified pencil lead electrode shows linearity in range of 5 µM to 100 µM with a detection limit of 2.3 µM achieved.


Cr(VI) Gold PLE Cyclic Voltammetry

Article Details

How to Cite
Sari TK, Riga R, Zubir M. Pencil Lead Electrode Modified with Gold Thin Layer for Voltammetric Detection of Chromium (VI). Eksakta [Internet]. 2021Jun.27 [cited 2022May28];22(2):145-53. Available from:


  1. B. Liu, L. Lu, M. Wang, and Y. Zi. (2008). A study of nanostructured gold modified glassy carbon electrode for the determination of trace Cr(VI), J. Chem. Sci., vol. 120, no. 5, pp. 493–498, doi: 10.1007/s12039-008-0077-1.
  2. T. K. Sari, F. Takahashi, J. Jin, R. Zein, and E. Munaf. (2018). Electrochemical determination of chromium(VI) in river water with gold nanoparticles-graphene nanocomposites modified electrodes, Anal. Sci., vol. 34, no. 2, pp. 155–160, doi: 10.2116/analsci.34.155.
  3. V. Klatt and J. Kunze. (2009). The determination of chromium VI in wastewater using GFAAS after extraction as diphenylcarbazide complex,” At. Spectrosc., vol. 30, no. 6, pp. 185–190.
  4. A. Nawrocka and J. Szkoda. (2012). Determination of chromium in biological material by electrothermal atomic absorption spectrometry method, Bull. Vet. Inst. Pulawy, vol. 56, no. 4, pp. 585–589, doi: 10.2478/v10213-012-0103-4.
  5. P. Nagaraj, N. Aradhana, A. Shivakumar, A. K. Shrestha, and A. K. Gowda. (2009). Spectrophotometric method for the determination of chromium (VI) in water samples, Environ. Monit. Assess., vol. 157, no. 1–4, pp. 575–582, doi: 10.1007/s10661-008-0557-2.
  6. K. K. Onchoke and S. A. Sasu. (2016). Determination of Hexavalent Chromium (Cr(VI)) Concentrations via Ion Chromatography and UV-Vis Spectrophotometry in Samples Collected from Nacogdoches Wastewater Treatment Plant, East Texas (USA), Adv. Environ. Chem., vol. 2016, no. Iii, pp. 1–10, doi: 10.1155/2016/3468635.
  7. F. Petrucci and O. Senofonte (2015). Determination of Cr(vi) in cosmetic products using ion chromatography with dynamic reaction cell-inductively coupled plasma-mass spectrometry (DRC-ICP-MS), Anal. Methods, vol. 7, no. 12, pp. 5269–5274, doi: 10.1039/c4ay03042g.
  8. A. Drinčić, T. Zuliani, J. Ščančar, and R. Milačič (2018) Determination of hexavalent Cr in river sediments by speciated isotope dilution inductively coupled plasma mass spectrometry, Sci. Total Environ., vol. 637–638, pp. 1286–1294, doi: 10.1016/j.scitotenv.2018.05.112.
  9. M. Abdul Aziz and A. N. Kawde (2013). Gold nanoparticle-modified graphite pencil electrode for the high-sensitivity detection of hydrazine, Talanta, vol. 115, pp. 214–221, doi: 10.1016/j.talanta.2013.04.038.
  10. R. T. Kachoosangi and R. G. Compton (2013). Voltammetric determination of Chromium(VI) using a gold film modified carbon composite electrode, Sensors Actuators, B Chem., vol. 178, pp. 555–562, doi: 10.1016/j.snb.2012.12.122.
  11. S. Wyantuti, Y. W. Hartati, C. Panatarani, and R. Tjokronegoro. (2015). Cyclic Voltammetric Study of Chromium (VI) and Chromium (III) on the Gold Nanoparticles-Modified Glassy Carbon Electrode, Procedia Chem., vol. 17, no. Vi, pp. 170–176, doi: 10.1016/j.proche.2015.12.109.
  12. C. Santhosh, M. Saranya, R. Ramachandran, S. Felix, V. Velmurugan, and A. Nirmala Grace, 2014, Graphene/gold nanocomposites-based thin films as an enhanced sensing platform for voltammetric detection of Cr(VI) ions, J. Nanotechnol., vol. 2014, doi: 10.1155/2014/304526.
  13. H. Du Nguyen, T. T. L. Nguyen, K. M. Nguyen, T. A. T. Tran, A. M. Nguyen, and Q. H. Nguyen. (2015). Determination of ppt Level Chromium(VI) Using the Gold Nano-Flakes Electrodeposited on Platinum Rotating Disk Electrode and Modified with 4-Thiopyridinium, Am. J. Anal. Chem., vol. 06, no. 05, pp. 457–467, doi: 10.4236/ajac.2015.65045.
  14. O. Domínguez-Renedo, L. Ruiz-Espelt, N. García-Astorgano, and M. J. Arcos-Martínez. (2008). Electrochemical determination of chromium(VI) using metallic nanoparticle-modified carbon screen-printed electrodes, Talanta, vol. 76, no. 4, pp. 854–858, doi: 10.1016/j.talanta.2008.04.036.
  15. W. Jin, G. Wu, and A. Chen. (2014). Sensitive and selective electrochemical detection of chromium(VI) based on gold nanoparticle-decorated titania nanotube arrays, Analyst, vol. 139, no. 1, pp. 235–241, doi: 10.1039/c3an01614e.
  16. M. C. Tsai and P. Y. Chen (2008). Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide (ITO) electrodes in acidic media, Talanta, vol. 76, no. 3, pp. 533–539, doi: 10.1016/j.talanta.2008.03.043.
  17. L. Liv and N. Nakiboǧlu. (2016). Simple and rapid voltammetric determination of boron in water and steel samples using a pencil graphite electrode, Turkish J. Chem., vol. 40, no. 3, pp. 412–421, doi: 10.3906/kim-1507-64.
  18. E. Alipour, M. R. Majidi, A. Saadatirad, S. M. Golabi, and A. M. Alizadeh. (2013). Simultaneous determination of dopamine and uric acid in biological samples on the pretreated pencil graphite electrode, Electrochim. Acta, vol. 91, pp. 36–42, doi: 10.1016/j.electacta.2012.12.079.
  19. P. H. C. P. Tavares and P. J. S. Barbeira. (2008). Influence of pencil lead hardness on voltammetric response of graphite reinforcement carbon electrodes, J. Appl. Electrochem., vol. 38, no. 6, pp. 827–832, doi: 10.1007/s10800-008-9518-2.
  20. I. G. David et al., (2015). Rapid determination of total polyphenolic content in tea samples based on caffeic acid voltammetric behaviour on a disposable graphite electrode, Food Chem., vol. 173, pp. 1059–1065, doi: 10.1016/j.foodchem.2014.10.139.
  21. Z. Q. Gong, A. N. A. Sujari, and S. Ab Ghani (2012). Electrochemical fabrication, characterization and application of carboxylic multi-walled carbon nanotube modified composite pencil graphite electrodes, Electrochim. Acta, vol. 65, pp. 257–265, doi: 10.1016/j.electacta.2012.01.057.
  22. J. Kariuki, E. Ervin, and C. Olafson. (2015). Development of a novel, low-cost, disposable wooden pencil graphite electrode for use in the determination of antioxidants and other biological compounds, Sensors (Switzerland), vol. 15, no. 8, pp. 18887–18900, doi: 10.3390/s150818887.
  23. I. G. David, D. E. Popa, and M. Buleandra. (2017). Pencil graphite electrodes: A versatile tool in electroanalysis, J. Anal. Methods Chem., vol. 2017, no. Cv, doi: 10.1155/2017/1905968.
  24. D. L. Vu, S. Žabčíková, L. Červenka, B. Ertek, and Y. Dilgin (2015). Sensitive voltammetric determination of natural flavonoid quercetin on a disposable graphite lead, Food Technol. Biotechnol., vol. 53, no. 4, pp. 379–384, doi: 10.17113/ftb.
  25. T. K. Sari, J. Jin, R. Zein, and E. Munaf. (2017). Anodic Stripping Voltammetry for the Determination of Trace Cr ( VI ) with Graphite / Styrene-Acrylonitrile Copolymer Composite Electrodes, vol. 33, no. July, pp. 801–806.