Main Article Content

Abstract

The objective of this experiment was to investigate the interaction between the application of banana stem compost and tofu industry liquid waste on the growth and yield of Bird's Eye Chili (Capsicum frutescens L.). The experiment followed a factorial completely randomized design (CRD) with two factors: the first factor being the application of banana stem compost with four levels: 0 g/polybag, 100 g/polybag, 200 g/polybag, and 300 g/polybag; the second factor being the dosage of tofu industry liquid waste with three levels: 0 ml/L water, 50 ml/L water, and 100 ml/L water. Based on the research findings, it can be concluded that the application of 300 g/polybag of banana stem compost and 100 ml/L of tofu industry liquid waste resulted in increased fruit weight in Bird's Eye Chili, with a yield of 107.87 g.

Keywords

Bird's Eye Chili, banana stem compost, tofu industry liquid waste.

Article Details

How to Cite
1.
Zahanis Z, Fatimah F, Purnamasari D, Fantika S. Optimization of Growth and Yield in Bird’s Eye Chili (Capsicum frutescens L.) through Sustainable Organic Fertilization Using Banana Stem Compost and Tofu Industry Liquid Waste. EKSAKTA [Internet]. 2021Dec.30 [cited 2024Nov.21];22(4):311-2. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/255

References

  1. Vaishnavi, B. A., Bhoomika, H. R., & Shetty, G. R. (2018). Genetic parameters study for growth, yield and quality traits in Bird’s eye chilli (Capsicum frutescens L.). Int. J. Curr. Microbiol. App. Sci, 7(5), 1813-1817.
  2. Dutta, S. K., Singh, S. B., Saha, S., Akoijam, R. S., Boopathi, T., Banerjee, A., ... & Roy, S. (2017). Diversity in bird’s eye chilli (Capsicum frutescens L.) landraces of north-east India in terms of antioxidant activities. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 87, 1317-1326.
  3. Kroff, J., Hume, D. J., Pienaar, P., Tucker, R., Lambert, E. V., & Rae, D. E. (2017). The metabolic effects of a commercially available chicken peri-peri (African bird’s eye chilli) meal in overweight individuals. British Journal of Nutrition, 117(5), 635-644.
  4. Yang, H. J., Lee, Y. S., & Choi, I. S. (2018). Comparison of physicochemical properties and antioxidant activities of fermented soybean-based red pepper paste, Gochujang, prepared with five different red pepper (Capsicum annuum L.) varieties. Journal of food science and technology, 55, 792-801.
  5. Sembiring, A., Basuki, R. S., Rosliani, R., & Rahayu, S. T. (2021). Farmers’ challenges on chili farming in the acid dry land: A case study from Pasir Madang-Bogor Regency, Indonesia. In E3S Web of Conferences (Vol. 316, p. 03010). EDP Sciences.
  6. Muflikh, Y. N., Smith, C., Brown, C., & Aziz, A. A. (2021). Analysing price volatility in agricultural value chains using systems thinking: a case study of the indonesian chilli value chain. Agricultural Systems, 192, 103179.
  7. Rehman, A., Chandio, A. A., Hussain, I., & Jingdong, L. (2019). Fertilizer consumption, water availability and credit distribution: Major factors affecting agricultural productivity in Pakistan. Journal of the Saudi Society of Agricultural Sciences, 18(3), 269-274.
  8. Itelima, J. U., Bang, W. J., Onyimba, I. A., Sila, M. D., & Egbere, O. J. (2018). Bio-fertilizers as key player in enhancing soil fertility and crop productivity: A review.
  9. Prabakaran, G., Vaithiyanathan, D., & Ganesan, M. (2018). Fuzzy decision support system for improving the crop productivity and efficient use of fertilizers. Computers and electronics in agriculture, 150, 88-97.
  10. Khatua, C., Sengupta, S., Balla, V. K., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 79, 287-295.
  11. Faisal, M., Gani, A., Mulana, F., & Daimon, H. (2016). Treatment and utilization of industrial tofu waste in Indonesia. Asian Journal of Chemistry, 28(3).
  12. Widayat, W., Philia, J., & Wibisono, J. (2019). Liquid waste processing of tofu industry for biomass production as raw material biodiesel production. In IOP Conference Series: Earth and Environmental Science (Vol. 248, No. 1, p. 012064). IOP Publishing.
  13. Chen, P., Xie, Q., Addy, M., Zhou, W., Liu, Y., Wang, Y., ... & Ruan, R. (2016). Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresource technology, 215, 163-172.
  14. Lewandowski, D. A. (2017). Design of thermal oxidation systems for volatile organic compounds. CRC Press.
  15. Batool, T., Ali, S., Seleiman, M. F., Naveed, N. H., Ali, A., Ahmed, K., ... & Mubushar, M. (2020). Plant growth promoting rhizobacteria alleviates drought stress in potato in response to suppressive oxidative stress and antioxidant enzymes activities. Scientific Reports, 10(1), 16975.
  16. Lakens, D., & Caldwell, A. R. (2021). Simulation-based power analysis for factorial analysis of variance designs. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920951503.
  17. Sriagtula, R., Karti, P. D. M. H., & Abdullah, L. (2016). Growth, Biomass and Nutrient Production of Brown Midrib Sorghum Mutant Lines at Different Harvest Times. Pakistan journal of Nutrition, 15(6), 524-531.
  18. Hananto, T., Banuwa, I. S., Niswati, A., & Yuwono, S. B. (2021). Study on the suspension extract of agro-industrial plant waste and the compost type on the change of soil chemical properties and the yields of shallot (Allium ascalonicum L.). In International Seminar on Promoting Local Resources for Sustainable Agriculture and Development (ISPLRSAD 2020) (pp. 225-233). Atlantis Press.
  19. Riyanto, D. (2021). The utilization of agricultural and livestock waste and the effect on new rice varieties yield on rainfed rice land of Ponjong-Gunungkidul. In BIO Web of Conferences (Vol. 33, p. 05004). EDP Sciences.
  20. Spaccini, R., Cozzolino, V., Di Meo, V., Savy, D., Drosos, M., & Piccolo, A. (2019). Bioactivity of humic substances and water extracts from compost made by ligno-cellulose wastes from biorefinery. Science of the Total Environment, 646, 792-800.
  21. Briukhanov, A., Subbotin, I., Uvarov, R., & Vasilev, E. (2017). Method of designing of manure utilization technology. Agronomy research, 15(3), 658-663.
  22. Heiskanen, J., Ruhanen, H., & Hagner, M. (2019). Effects of Compost, Biochar and Ash Mixed in Till Soil Cover of Mine Tailings on Plant Growth and Bioaccumulation of Elements: A Bioassay in a Greenhouse. Biochar and Ash Mixed in Till Soil Cover of Mine Tailings on Plant Growth and Bioaccumulation of Elements: A Bioassay in a Greenhouse.
  23. Spanoghe, J., Grunert, O., Wambacq, E., Sakarika, M., Papini, G., Alloul, A., ... & Vlaeminck, S. E. (2020). Storage, fertilization and cost properties highlight the potential of dried microbial biomass as organic fertilizer. Microbial Biotechnology, 13(5), 1377-1389.
  24. Eich-Greatorex, S., Vivekanand, V., Estevez, M. M., Schnürer, A., Børresen, T., & Sogn, T. A. (2018). Biogas digestates based on lignin-rich feedstock–potential as fertilizer and soil amendment. Archives of Agronomy and Soil Science, 64(3), 347-359.
  25. Di Costanzo, N., Cesaro, A., Di Capua, F., & Esposito, G. (2021). Exploiting the nutrient potential of anaerobically digested sewage sludge: a review. Energies, 14(23), 8149.
  26. Putro, P. G. L., & Hadiyanto, H. (2021). Water quality parameters of tofu wastewater: a review. In IOP Conference Series: Materials Science and Engineering (Vol. 1156, No. 1, p. 012018). IOP Publishing.
  27. Seroja, R., Effendi, H., & Hariyadi, S. (2018). Tofu wastewater treatment using vetiver grass (Vetiveria zizanioides) and zeliac. Applied water science, 8, 1-6.
  28. Khatua, C., Sengupta, S., Balla, V. K., Kundu, B., Chakraborti, A., & Tripathi, S. (2018). Dynamics of organic matter decomposition during vermicomposting of banana stem waste using Eisenia fetida. Waste Management, 79, 287-295.
  29. Alzate Acevedo, S., Díaz Carrillo, Á. J., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules, 26(17), 5282.
  30. Hartatik, W., & Setyorini, D. (2021). Application of organic and biofertilizers to increase soil biota diversity and vegetable production. In IOP Conference Series: Earth and Environmental Science (Vol. 648, No. 1, p. 012148). IOP Publishing.
  31. Alzate Acevedo, S., Díaz Carrillo, Á. J., Flórez-López, E., & Grande-Tovar, C. D. (2021). Recovery of banana waste-loss from production and processing: a contribution to a circular economy. Molecules, 26(17), 5282.
  32. Kumar, H., Bhardwaj, K., Sharma, R., Nepovimova, E., Kuča, K., Dhanjal, D. S., ... & Kumar, D. (2020). Fruit and vegetable peels: Utilization of high value horticultural waste in novel industrial applications. Molecules, 25(12), 2812.
  33. Amalia, S. N., Prihastanti, E., & Hastuti, E. D. (2019, May). Effect of the combination of tofu liquid waste and plant media of sago waste on the growth of cayenne (Capsicum frustescens L.). In Journal of Physics: Conference Series (Vol. 1217, No. 1, p. 012157). IOP Publishing.
  34. Kuryata, V. G., & Kravets, O. O. (2018). Features of morphogenesis, accumulation and redistribution of assimilate and nitrogen containing compounds in tomatoes under retardants treatment. Ukrainian journal of ecology, 8(1), 356-362.
  35. Malhotra, H., Vandana, Sharma, S., & Pandey, R. (2018). Phosphorus nutrition: plant growth in response to deficiency and excess. Plant nutrients and abiotic stress tolerance, 171-190.