Main Article Content

Abstract

Widely consumed food products can be strategically fortified with dietary fiber to enhance population-level fiber intake. This study examined the physicochemical and functional properties of palm fruit flour to determine its potential as a dietary fiber-enhancing substitute in tapioca-based boba. Initially, palm fruit flour was characterized for its physicochemical and functional properties. Afterwards, it was substituted for 20% of the tapioca in tapioca-based boba pearls and compared to a control (100% tapioca). Analyses of both the raw flour and the boba included its physicochemical and functional properties. Characterization of palm fruit flour showed a high water absorption capacity (8.79 mL/g) and whiteness degree (92.12%). Substituting 20% of the tapioca with palm fruit flour resulted in a product with a high dietary fiber content (20.73%), increased moisture content (68.46 ± 1.25), and a lowered caloric value (2.24 kcal). In conclusion, palm fruit flour is an effective ingredient for fortifying boba nutritionally, though it changes the texture, producing a softer product. Thus, it presents a potentially valuable approach for formulating novel functional foods for healthy consumers, offering a redefined sensory experience. This study is the first to evaluate palm fruit flour as a partial tapioca substitute for fiber-enriched boba production.

Keywords

Boba tapioca palm fruit flour dietary fiber functional food

Article Details

How to Cite
1.
Azima F, Desniarti D, Iqbal M, Khaira BS. Production, Characterization, and Application of Palm Fruit (Arenga pinnata Merr.) Flour in Boba Pearls. EKSAKTA [Internet]. 2025 Nov. 4 [cited 2025 Nov. 27];26(04):468-79. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/628

References

  1. [1] Lambeau, K. V., & McRorie, J. W. J. (2017). Fiber supplements and clinically proven health benefits: How to recognize and recommend an effective fiber therapy. Journal of the American Association of Nurse Practitioners, 29(4).
  2. [2] Kumar, V., Sinha, A. K., Makkar, H. P. S., de Boeck, G., & Becker, K. (2012). Dietary roles of non-starch polysaccharides in human nutrition: A review. Critical Reviews in Food Science and Nutrition, 52(10), 899–935.
  3. [3] Hojsak, I., et al. (2022). Benefits of dietary fibre for children in health and disease. Archives of Disease in Childhood, 107(11), 973–979.
  4. [4] Murni, I. K., Sulistyoningrum, D. C., Susilowati, R., Julia, M., & Dickinson, K. M. (2022). The association between dietary intake and cardiometabolic risk factors among obese adolescents in Indonesia. BMC Pediatrics, 22(1), 273.
  5. [5] Rambe, S. Y., Pratita, W., Saing, J. H., Wahyuni, A. S., Evalina, R., & Dalimunthe, W. (2021). The correlation of dietary fiber intake with nutritional status among adolescents of junior high school in Medan, North Sumatera Indonesia. International Journal of Research Publications, 91(1), 265–271.
  6. [6] Iskandar, W., Hayuningtyas, A., Ayunda, H. M., & Marniati, M. (2022). The relationship between fiber consumption and the incidence of overweight in adolescent girls in Aceh Barat. Journal of Nutrition Science, 3(1), 31–33.
  7. [7] Ibrahim, O., & Menkovska, M. (2022). Dietary fibers—Classification, properties, analysis and function: A review. Advances in Bioscience and Biotechnology, 13(12), 527–544.
  8. [8] Kshirsagar, S., Takarkhede, S., Jha, A., Jain, R., Jadhav, V., & Jadhav, D. (2020). A comprehensive review on dietary fiber and their functional properties in human body. World Journal of Biological Pharmaceutical and Health Sciences, 4, 59–76.
  9. [9] Fasogbon, B. M., Ademuyiwa, O. H., & Ogundipe, O. O. (2024). Therapeutic potential and roles of dietary seaweeds in food: A systematic review. World Development Sustainability, 4, 100141.
  10. [10] Veronica, M. T., & Ilmi, I. M. B. (2020). Minuman kekinian di kalangan mahasiswa Depok dan Jakarta. Indonesian Journal of Health Development, 2(2), 83–84.
  11. [11] Azima, F., Neswati, Syukri, D., & Indrayenti, D. (2016). Utilization of mixed oyek cassava, corn grits, brown rice and soy grits in the production of snack extrusion. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 7(1), 1063–1069.
  12. [12] Yanti, Madriena, & Ali, S. (2017). Cosmeceutical effects of galactomannan fraction from Arenga pinnata fruits in vitro. Pharmacognosy Research, 9(1), 39–45.
  13. [13] Sayuti, K., Yenrina, R., & Anggraini, T. (2017). Characteristics of ‘Kolang-kaling’ (sugar palm fruit jam) with added natural colorants. Pakistan Journal of Nutrition, 16(2), 69–76.
  14. [14] Bubin, S. F. A., et al. (2019). Characterization and stability of pitaya pearls from hydrocolloids by reverse spherification. International Journal of Food Properties, 22(1), 1353–1364.
  15. [15] Singh, M., Liu, S. X., & Vaughn, S. F. (2012). Effect of corn bran as dietary fiber addition on baking and sensory quality. Biocatalysis and Agricultural Biotechnology, 1(4), 348–352.
  16. [16] Wang, L., Li, S., & Gao, Q. (2014). Effect of resistant starch as dietary fiber substitute on cookies quality evaluation. Food Science and Technology Research, 20(2), 263–272.
  17. [17] Fitrilia, T. (2019). Karakteristik fisikokimia serbuk kolang kaling (Arenga pinnata Merr) berdasarkan variasi perendaman. Jurnal Agroindustri Halal, 5(1), 104–112.
  18. [18] Nanlohy, E. E. E. M., Kaya, A. O. W., Wenno, M. R., & Peea, G. I. (2024). Fortifikasi karagenan dan kolagen pada pembuatan boba. Indonesian Journal of Teknologi Hasil Perikanan, 4(1).
  19. [19] AOAC. (2005). Official methods of analysis of the Association of Official Analytical Chemists. Association of Official Analytical Chemists, Maryland.
  20. [20] Azima, F., Nazir, N., & Efendi, H. (2020). Characteristics of physico-chemical and functional properties of starch extracts from tubers. Journal of Physics: Conference Series, 1469, 012002.
  21. [21] Szwedziak, K., Kotysz, D., & Mendel, I. K. (2021). Effect of the addition of modified starch on the texture and flaking of the melted. Food Engineering, 91–96.
  22. [22] DDS. (n.d.). CAL3K-S oxygen bomb calorimeter. Manufacturing Super Calorimeters for Today’s Analytical Needs.
  23. [23] Azzahra, Y., Azima, F., & Rini, R. (2025). Characterization of instant multigrain milk enriched with cinnamon (Cinnamomum burmannii) extract: Nutritional, antioxidant activity, and dietary fiber. Journal of Medicinal Chemistry and Sciences, 8(5), 454–468.
  24. [24] Debet, M. R., & Gidley, M. J. (2006). Three classes of starch granule swelling: Influence of surface proteins and lipids. Carbohydrate Polymers, 64(3), 452–465.
  25. [25] Liu, X., et al. (2013). Thermal degradation and stability of starch under different processing conditions. Starch - Stärke, 65(1–2), 48–60.
  26. [26] USDA. (2019). Flours, cereal grain. Commercial Item Description, May 2019, 1–14.
  27. [27] Widyaningsih, M. M. K., Purwijantingsih, E., & Swasti, Y. R. (2021). Kualitas es krim yoghurt sinbiotik dengan variasi tepung kolang-kaling (Arenga pinnata Merr.). Jurnal Sains dan Teknologi Pangan, 6(3), 3897–3908.
  28. [28] Handayani, P. A., Nethania, J. E., Triaji, D. H. K., Rengga, W. D. P., & Wulansarie, R. (2024). Effect of H₂O₂ catalyst on the ozonation process of sugar palm fruit flour (Arenga pinnata Merr.). IOP Conference Series: Earth and Environmental Science, 1381(1).
  29. [29] Muhammad, S., Syah, I., & Xyzquolyna, D. (2021). Increasing flour whiteness index on Amorphophallus paeoniifolius (Dennst.) Nicolson flour production by sodium metabisulfite. Anjoro International Journal of Agriculture and Business, 2, 9–18.
  30. [30] Wang, S., Ding, L., Chen, S., Zhang, Y., He, J., & Li, B. (2022). Effects of konjac glucomannan on retrogradation of amylose. Foods, 11(17).
  31. [31] Marta, H., et al. (2025). Physicochemical, pasting, and functional properties of tuber-based composite flours and their application in gluten-free muffins. CyTA - Journal of Food, 23(1), 2541891.
  32. [32] Chandra, S., Singh, S., & Kumari, D. (2015). Evaluation of functional properties of composite flours and sensorial attributes of composite flour biscuits. Journal of Food Science and Technology, 52(6), 3681–3688.
  33. [33] Habeebrakuman, R., Kaki, S. S., Lakshmi Anu, P. D. B., Maloo, S., Vellanki, B., & Sri Lakshmi, K. M. (2019). Influence of flour type on physico-chemical characteristics during deep frying. Journal of Food Science and Technology, 56(7), 3471–3480.
  34. [34] Abduh, S. B. M., Nurwantoro, Mulyani, S., Nurwidiyanto, A. R., & Widiyanti, S. H. (2024). Gelatinization behavior, morphological, and chemical properties of cassava, sago, and wheat flour. ASEAN Journal of Chemical Engineering, 24(3).
  35. [35] Won, C., et al. (2017). Rheological, pasting, thermal and retrogradation properties of octenyl succinic anhydride modified potato starch. Food Science and Technology, 37(2), 321–327.
  36. [36] Da Silva Costa, R. A., Bonomo, R. C. F., Rodrigues, L. B., Santos, L. S., & Veloso, C. M. (2020). Improvement of texture properties and syneresis of arrowroot (Maranta arundinacea) starch gels by using hydrocolloids (guar gum and xanthan gum). Journal of the Science of Food and Agriculture, 100(7), 3204–3211.
  37. [37] Shahzad, S. A., et al. (2019). Use of hydrocolloid gums to modify the pasting, thermal, rheological, and textural properties of sweet potato starch. International Journal of Polymer Science, 2019(1), 6308591.
  38. [38] Lin, X., Zhang, X., Du, B., & Xu, B. (2023). Morphological, structural, thermal, pasting, and digestive properties of starches isolated from different varieties of rice: A systematic comparative study. Foods, 12(24).
  39. [39] Yang, Y., Fu, J., Duan, Q., Xie, H., Dong, X., & Yu, L. (2024). Strategies and methodologies for improving toughness of starch films. Foods, 13(24).
  40. [40] Pan, W., Qi, X., Huang, Z., Shen, M., Wen, H., & Xie, J. (2024). Effect of three polysaccharides with different charge characteristics on the properties of highland barley starch gel. International Journal of Biological Macromolecules, 281, 136267.
  41. [41] Kang, J., et al. (2024). Effects of galactomannans of varied structural features on the functional characteristics and in vitro digestibility of wheat starch. International Journal of Biological Macromolecules, 281, 136295.
  42. [42] Laksono, H., Dyah, C. K., Putri, R. P. G., Soraya, M., & Purwoto, H. (2022). Characteristics of Rapid Visco Analyzer carrageenan extract with enzymatic pretreatment of Kappaphycus striatum. ASEAN Journal of Chemical Engineering, 22(2), 326–336.
  43. [43] Kwaśny, D., Borczak, B., Zagrodzki, P., Kapusta-Duch, J., Prochownik, E., & Doskočil, I. (2025). Antioxidant activity, total polyphenol content, and cytotoxicity of various types of starch with the addition of different polyphenols. Molecules, 30(11).
  44. [44] Zaki, I., Wati, T. W., Kurniawati, T. F., Putri, W. P., & Khansa, I. (2022). Diet tinggi serat menurunkan berat badan pada obesitas. Jurnal Gizi dan Kuliner, 2(2), 1.
  45. [45] Nurjanah, A., Jacoeb, A. M., Hidayat, T., & Chrystiawan, R. (2018). Perubahan komponen serat rumput laut Caulerpa sp. (dari Tual, Maluku) akibat proses perebusan. Teknologi Ilmu dan Teknologi Kelautan Tropis, 10(1), 35–48.