Main Article Content
Abstract
This study aimed to evaluate the yield responses of red chili to three agricultural buildings (greenhouse, screenhouse, open field), four nutrient solution volumes (100%, 75%, 50%, 25% ETc) and two cultivars (Pilar and Osaka). This is the first study to assess the combined effects of agricultural buinding type, nutrient volume based on ETc, and two red chili cultivars (Pilar and Osaka) using a split-splt plot design under tropical-dry season conditions. The experiment was conducted from August 2024 to February 2025 at Padjadjaran University, Indonesia, using a split-split plot design with 24 treatment combinations and three replications. Data were analyzed using ANOVA and DMRT at the 5% level. The results showed no interaction among three factors but each had a significant individual effect. Greenhouse conditions significantly increase the number of fruits per plant, fruit weight per plant, individual fruit weight and fruit length. Nutrient volume of 75% ETc and 100% ETc produced comparable result for fruit number and fruit weight per plant. The Pilar cultivar outperformed Osaka in fruit weight and diameter. These findings suggest that greenhouse cultivation with 75% ETc and Pilar cultivar enhance yield and supporting sustainable chili production in tropical regions.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Bal, S., Sharangi, A. B., Upadhyay, T. K., Khan, F., Pandey, P., Siddiqui, S., & Yadav, D. K. (2022). Biomedical and antioxidant potentialities in chilli: Perspectives and way forward. Molecules, 27(19), 6380.
- [2] Duchenne-Moutien, R. A., & Neetoo, H. (2021). Climate change and emerging food safety issues: A review. Journal of Food Protection, 84(11), 1884–1897.
- [3] Alharbi, S., Felemban, A., Abdelrahim, A., & Al-Dakhil, M. (2024). Agricultural and Technology-Based Strategies to Improve Water-Use Efficiency in Arid and Semiarid Areas. Water (Switzerland), 16(13).
- [4] Supekar, S., Kadale, Dr. A., & Bhagyawant, Dr. R. (2021). Effect of different irrigation and fertigation levels on fruit quality and yield of Summer chilli (Capsicum annuum L.). International Journal of Chemical Studies, 9(2), 1039–1043.
- [5] Deng, C., Zhong, Q., Shao, D., Ren, Y., Li, Q., Wen, J., & Li, J. (2024). Potential Suitable Habitats of Chili Pepper in China under Climate Change. Plants, 13(7).
- [6] Saidah, Z., Harianto, Hartoyo, S., & Asmarantaka, R. W. (2020). Change on Production and Income of Red Chili Farmers. IOP Conference Series: Earth and Environmental Science, 466(1).
- [7] Badji, A., Benseddik, A., Bensaha, H., Boukhelifa, A., & Hasrane, I. (2022). Design, technology, and management of greenhouse: A review. Journal of Cleaner Production, 373
- [8] Lestari, P., Tasmi, & Antony, F. (2023). Sistem Penyiraman Budidaya Tanaman Cabai berdasarkan Pengukuran Suhu dan Kelembaban Tanah. Journal of Intelligent Networks and IoT Global, 1(1), 20–32
- [9] Dai, X., Yu, Z., Matheny, A. M., Zhou, W., & Xia, J. (2022). Increasing evapotranspiration decouples the positive correlation between vegetation cover and warming in the Tibetan plateau. Frontiers in Plant Science, 13, 974745.
- [10] Ahmad, F., Kusumiyati, K., Soleh, M. A., Khan, M. R., & Sundari, R. S. (2023). Watering Volume and Growing Design’s Effect on the Productivity and Quality of Cherry Tomato (Solanum lycopersicum cerasiformae) Cultivar Ruby. Agronomy, 13(9).
- [11] Chia, S. Y., & Lim, M. W. (2022). A critical review on the influence of humidity for plant growth forecasting. IOP Conference Series: Materials Science and Engineering, 1257(1), 012001.
- [12] Aryani, R. D., Basuki, I. F., Budisantoso, I., & Widyastuti, A. (2022). Pengaruh Ketinggian Tempat terhadap Pertumbuhan dan Hasil Tanam Cabai Rawit (Capsicum frutescens L.). Agriprima : Journal of Applied Agricultural Sciences, 6(2), 202–211.
- [13] Qiao, M., Hong, C., Jiao, Y., Hou, S., & Gao, H. (2024). Impacts of Drought on Photosynthesis in Major Food Crops and the Related Mechanisms of Plant Responses to Drought. Plants, 13(13).
- [14] Laub, M., Pataczek, L., Feuerbacher, A., Zikeli, S., & Högy, P. (2022). Contrasting yield responses at varying levels of shade suggest different suitability of crops for dual land-use systems: a meta-analysis. Agronomy for Sustainable Development, 42(3), 51.
- [15] Schymanski, S. J., & Or, D. (2016). Wind increases leaf water use efficiency. Plant Cell and Environment, 39(7).
- [16] Wu, W., Chen, L., Liang, R., Huang, S., Li, X., Huang, B., Luo, H., Zhang, M., Wang, X., & Zhu, H. (2024). The role of light in regulating plant growth, development and sugar metabolism: a review. Frontiers in Plant Science, 15.
- [17] Darko, E., Hamow, K. A., Marček, T., Dernovics, M., Ahres, M., & Galiba, G. (2022). Modulated Light Dependence of Growth, Flowering, and the Accumulation of Secondary Metabolites in Chilli. Frontiers in Plant Science, 13.
- [18] Grotjahn, R. (2021). Weather extremes that affect various agricultural commodities. Extreme events and climate change: a multidisciplinary approach, 21-48.
- [19] Agraria, U., Habana López-Bravo, L., Placeres-Remior, E. ;, Carbonell-Saavedra, A. ;, Martínez-Rodríguez, E. ;, González, A. ;, & Cueto, O. (2023). Variability of Agroclimatic Factors and Irrigation Rate in Protected Cultivation of Pepper. Revista Ciencias Técnicas Agropecuarias, 32(4), 5.
- [20] Zaib, M., Zeeshan, A., Aslam, S., Bano, S., Ilyas, A., Abbas, Z., Nazar, A., & Mumtaz, S. (2023). Drought stress and plants production: A review with future prospects. International Journal of Scientific Research and Engineering Development, 6(4), 1278-1292.
- [21] Wassie, W. A., Andualem, A. M., Molla, A. E., Tarekegn, Z. G., Aragaw, M. W., & Ayana, M. T. (2023). Growth, Physiological, and Biochemical Responses of Ethiopian Red Pepper (Capsicum annum L.) Cultivars to Drought Stress. Scientific World Journal, 2023(1), 4374318.
- [22] Hareem, M., Danish, S., Obaid, S. Al, Ansari, M. J., & Datta, R. (2024). Mitigation of drought stress in chili plants (Capsicum annuum L.) using mango fruit waste biochar, fulvic acid and cobalt. Scientific Reports, 14(1).
- [23] Šalagovič, J., Vanhees, D., Verboven, P., Holsteens, K., Verlinden, B., Huysmans, M., Van de Poel, B., & Nicolaï, B. (2024). Microclimate monitoring in commercial tomato (Solanum Lycopersicum L.) greenhouse production and its effect on plant growth, yield and fruit quality. Frontiers in Horticulture, 3(1425285).
- [24] Appolloni, E., Orsini, F., Pennisi, G., Gabarrell Durany, X., Paucek, I., & Gianquinto, G. (2021). Supplemental LED Lighting Effectively Enhances the Yield and Quality of Greenhouse Truss Tomato Production: Results of a Meta-Analysis. Frontiers in Plant Science, 12.
- [25] Rajasekar, M., Arumugam, T., & Kumar, S. R. (2013). Journal of Horticulture and Forestry Influence of weather and growing environment on vegetable growth and yield. Journal of Horticulture and Forestry, 5(10), 160–167.
- [26] Ahmad, F., Kusumiyati, K., Arief Soleh, M., Rabnawaz Khan, M., & Siti Sundari, R. (2025). Microclimates growing and watering volumes influences the physiological traits of chili pepper cultivars in combating abiotic stress. Scientific Reports, 15(1), 4183.
- [27] Manjunatha, M. K., Babu, B. M., Ramesh G., Reddy, G. V. S., & Kulkarani, P. S. (2023). Comparative Analysis of Capsicum Cultivation under Different Protected Structures. International Journal of Plant & Soil Science, 35(23), 572–578.
- [28] Watabe, T., Homma, M., Ahn, D. H., & Higashide, T. (2021). Examination of yield components and the relationship between dry matter production and fruit yield in greenhouse sweet pepper (Capsicum annuum). The Horticulture Journal, 90(3), 247-254.
- [29] Thokchom, S., Saicharan, D., Madhuri, B., Supriya, K., Erla, S., & Maharaj, S. (2023). Adaptation strategies for protected cultivation under changing climate patterns in dry regions. Enhancing resilience of dryland agriculture under changing climate (pp. 487-509). Singapore: Springer Nature Singapore.
- [30] Supriadi, D. R., Susila, A. D., & Sulistyono, E. (2018). Penetapan Kebutuhan Air Tanaman Cabai Merah (Capsicum annuum L.) dan Cabai Rawit (Capsicum frutescens L.). Jurnal Hortikultura Indonesia, 9(1), 38–46.
- [31] Lyu, X., Hassan, H. M., Zan, Y., & Tan, J. (2025). Interactive effects of irrigation and fertilization on the growth and physiological characteristics of greenhouse tomatoes, Solanum lycopersicum L. Scientific Reports, 15(1).
- [32] Ahmad, F., Kusumiyati, K., Soleh, M. A., Khan, M. R., & Sundari, R. S. (2024). Chili cultivars vulnerability: a multi-factorial examination of disease and pest-induced yield decline across different growing microclimates and watering regimens. BMC Plant Biology, 24(1), 979
- [33] Ahmad, F., Kusumiyati, K., Soleh, M. A., Khan, M. R., & Sundari, R. S. (2024). Chili crop innovation: Exploring enclosed growing designs for varied varieties—A review. Agrosystems, Geosciences and Environment 7(2). e20491.
- [34] Mauxion, J. P., Chevalier, C., & Gonzalez, N. (2021). Complex cellular and molecular events determining fruit size. Trends in Plant Science, 26(10), 1023-1038.
- [35] Likeng-Li-Ngue, B. C., Nyouma, A., Ndiang, Z., Nkoulou, L. F. M., Amba, D.-B. A., Mvogo, B., Molo, T., Molo, N. S., Zoa, F. B., Bell, J. M., & Ngalle, H. B. (2025). Genetic Variability, Heritability and Path Analysis Identify Direct Selection Criteria for Seed Number Per Fruit and Attributing Traits in Chilli (Capsicum annuum L.). American Journal of Plant Sciences, 16(05), 559–576.