Main Article Content

Abstract

Wood ear mushroom is a traditional edible and medicinal mushroom widely consumed as a food supplement. The color of the fruit body is a crucial indicator of commercial quality that influences consumer purchasing interest. However, color quality can decrease due to inappropriate post-harvest technology. The application of nano edible coating, packaging, and storage temperature can help maintain color stability during storage. This study aims to determine the effect of nano edible coating, packaging, and storage temperature on the color of wood ear mushrooms based on the parameters L*, a*, b*, Chroma, Hue, Browning Index, and color difference. The experimental design used was a Completely Randomized Design (CRD) with a combination of nano edible coating (sodium alginate and aloe vera), packaging (biodegradable, wrap, and vacuum plastic), and storage temperatures (±25 ℃, 10 ℃, and 5 ℃). Each treatment was repeated twice, resulting in 38 experimental units, each consisting of 3 mushrooms, total of 114 mushrooms. The results showed that nano aloe vera with vacuum packaging at a storage temperature of 5 ℃ provided the best results in maintaining the color of the wood ear mushroom during storage, with the lowest lightness and color difference values.

Keywords

Auricularia auricula-judae (Bull.) Quél. color nano edible coating vacuum packaging

Article Details

How to Cite
1.
Kusumiyati K, Rachman AA, Hamdani JS. Study on Color Properties of Auricularia auricula-judae (Bull.) Quél. Affected by Nano Edible Coatings, Packaging Types, and Storage Temperatures . EKSAKTA [Internet]. 2025 Aug. 27 [cited 2025 Aug. 29];26(03):355-70. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/614

References

  1. [1] Han, S.-R., Yu, S., Lee, J.-H., Jung, S.-H., Lim, K.-O., and Oh, T.-J. (2018). Antimicrobial Activity of Various Solvent Extracts of Auricularia Auricula-Judae Against Oral Bacteria. Indian J. Public Heal. Res. Dev., 9(11), 862.
  2. [2] Gebreyohannes, G., Nyerere, A., Bii, C., and Sbhatu, D. B. (2019). Investigation of Antioxidant and Antimicrobial Activities of Different Extracts of Auricularia and Termitomyces Species of Mushrooms. Sci. World J., 2019, 1–10.
  3. [3] Sukmawati, I. K., Susilawati, E., and Putri, S. D. (2019). Antibacterial Activity of Extracts and Fractions of Wood Ear Mushroom (Auricularia auricula). Pharmaciana, 9(1), 157–166.
  4. [4] Islam, T., Yao, F., Kang, W., Lu, L., and Xu, B. (2022). A Systematic Study on Mycochemical Profiles, Antioxidant, and Anti-Inflammatory Activities of 30 Varieties of Jew’s Ear (Auricularia auricula-judae). Food Science and Human Wellness, 11(4), 781–794.
  5. [5] Gulati, V., Dass Singh, M., and Gulati, P. (2019). Role of Mushrooms in Gestational Diabetes Mellitus. AIMS Med. Sci., 6(1), 49–66.
  6. [6] Arista, A. P., Widadie, F., and Kusnandar. (2024). Comparative Analysis of Oyster Mushroom and Kuping Mushroom Farming in Mushroom Cultivation UMKM Clusters in Sukoharjo District. J. Agristan, 6(1), 128–141.
  7. [7] Feng, K., Zuo, R., Chu, T., Zhao, Q., Li, J., Liu, L., Sheng, Q., Song, W., Yuan, Y., Wang, Y., and Yue, T. (2024).Comprehensive Investigation on Non-Volatile and Volatile Compounds in Auricularia auricula from Different Regions by UPLC-MS/MS-Based Metabolomics and GC-IMS. Lwt, 199, 1–11.
  8. [8] Silva, M., Vida, M., Ramos, A. C., Lidon, F. J., Reboredo, F. H., and Gonçalves, E. M. (2025). Storage Temperature Effect on Quality and Shelf-Life of Hericium Erinaceus Mushroom. Horticulturae, 11(2), 1–18.
  9. [9] Sharma, V., Singh, P., and Singh, A. (2024). Shelf-Life Extension of Fresh Mushrooms: From Conventional Practices to Novel Technologies—A Comprehensive Review. Future Postharvest Food, 1, 317–333.
  10. [10] Putra, A. N., Wulan, S., and Ingkadijaya, R. (2018). The Influence of Visualization of Food Appearance and Food Quality Towards Customer Satisfaction in Tutup. Tourism Research Journal E, 2(2), 2598–9839.
  11. [11] Qiu, Z., Gao, Y., Wang, S., Wang, J., Wang, X., Cai, N., Zhao, J., Li, T., Li, H., Li, T., and Shu, L. (2023). Mechanism Underlying Light Intensity-Induced Melanin Synthesis of Auricularia heimuer Revealed by Transcriptome Analysis. Cells, 12(1), 1–16.
  12. [12] Gholami, R., Ahmadi, E., and Farris, S. (2017). Shelf Life Extension of White Mushroom (Agaricus bisporus) by Low Temperatures Conditioning, Modified Atmosphere, and Nanocomposite Packaging Material. Food Packaging and Shelf Life, 14, 88–95.
  13. [13] Cavusoglu, S., Uzun, Y., Yilmaz, N., Ercisli, S., Eren, E., Ekiert, H., Elansary, H. O., and Szopa, A. (2021). Maintaining The Quality and Storage Life of Button Mushrooms (Agaricus bisporus) with Gum, Agar, Sodium Alginate, Egg White Protein, and Lecithin Coating. Journal of Fungi, 7(8), 1–9.
  14. [14] Kumari, A., and Baskaran, P. (2015). An Overview on Mushroom Technology: Cultivation, Harvesting, Post-Harvest Management and Marketing. Trends in Post Harvest Technology and Management.
  15. [15] Kim, Y., Lee, U., and Eo, H. J. (2023). Influence of Storage Temperature on Levels of Bioactive Compounds In Shiitake Mushrooms (Lentinula edodes). Mycobiology, 51(6), 445–451.
  16. [16] Ates, U., Islam, A., Ozturk, B., Aglar, E., Karakaya, O., and Gun, S. (2022). Changes in Quality Traits and Phytochemical Components of Blueberry (Vaccinium corymbosum Cv. Bluecrop) Fruit in Response to Postharvest Aloe Vera Treatment. International Journal of Fruit Science, 22(1), 303–316.
  17. [17] Qiu, Z., Wu, X., Zhang, J., and Huang, C. (2018). High-Temperature Induced Changes of Extracellular Metabolites in Pleurotus ostreatus and Their Positive Effects on The Growth of Trichoderma asperellum. Frontiers in Microbiology, 9(10), 1–13.
  18. [18] Liu, Y., Tang, N., Lin, D., Deng, W., and Li, Z. (2023). Integration of Multi-Omics Analyses Highlights The Secondary Metabolism Response of Tomato Fruit to Low Temperature Storage. Food Research International, 173(P1), 1–11.
  19. [19] Moradinezhad, F., Adiba, A., and Ranjbar, A. (2025). Edible Coatings to Prolong the Shelf Life and Improve the Quality of Subtropical Fresh / Fresh-Cut Fruits : A Review. Horticulturae, 11, 1–24.
  20. [20] Rahman, M. S., Hassan, M. K., Uddin Talukder, F., Rahman, S., and Akther, M. M. (2021). Combined Effect of Low Temperature and Thickness of Polypropylene Package on Shelf Life and Quality of Oyster Mushroom (Pleurotus ostreatus). Journal of Horticulture and Postharvest Research, 4(2), 127–140.
  21. [21] Khafar, E. A. A., Zidan, N. S., and Aboul-Anean, H. E. D. (2018). The Effect of Nano Materials on Edible Coating and Films’ Improvement. International Journal of Pharmaceutical Research & Allied Sciences, 7(3), 20–41.
  22. [22] Hmmam, I., Ali, M. A. S., and Abdellatif, A. (2023). Alginate-Based Zinc Oxide Nanoparticles Coating Extends Storage Life and Maintains Quality Parameters of Mango Fruits “cv. Kiett.” Coatings, 13(2), 1–21.
  23. [23] Suriati, L., Utama, I. M. S., and Harsojuwono, Bambang Admadi, Gunam, I. B. W. (2020). Ecogel Incorporated with Nano-Additives to Increase Shelf-Life of Fresh-Cut Mango. Journal of Applied Horticulture, 22(3), 189–195.
  24. [24] Dudina, D. V., and Bokhonov, B. B. (2022). Materials Development Using High-Energy Ball Milling: A Review Dedicated to the Memory of M.A. Korchagin. Journal of Composites Science, 6(188), 1–17.
  25. [25] Ch Momin, M., Jamir, A. R., Ankalagi, N., Bijaya Devi, O., and Henny, T. (2021). Edible Coatings in Fruits and Vegetables: A Brief Review. The Pharma Innovation Journal, 10(7), 71–78.
  26. [26] Cliffe-Byrnes, V., and O’Beirne, D. (2008). Effects of Washing Treatment on Microbial and Sensory Quality of Modified Atmosphere (MA) Packaged Fresh Sliced Mushroom (Agaricus bisporus). Postharvest Biology and Technology, 48(2), 283–294.
  27. [27] Kasim, R., and Kasim, M. U. (2015). Biochemical Changes and Color Properties of Fresh-Cut Green Bean (Phaseolus vulgaris L. cv.gina) Treated with Calcium Chloride During Storage. Food Science and Technology (Brazil), 35(2), 266–272.
  28. [28] Manolopoulou, E., and Varzakas, T. (2016). Effect of Temperature in Color Changes of Green Vegetables. Current Research in Nutrition and Food Science, 4(SpecialIssue2), 10–17.
  29. [29] Cao, Y., Wu, L., Xia, Q., Yi, K., and Li, Y. (2024). Novel Post-Harvest Preservation Techniques for Edible Fungi: A Review. Foods, 13(10), 1–16.
  30. [30] Adiletta, G., Russo, P., Senadeera, W., and Di Matteo, M. (2016). Drying Characteristics and Quality of Grape Under Physical Pretreatment. J. Food Eng., 172, 9–18.
  31. [31] Castelo Branco Melo, N. F., de MendonçaSoares, B. L., Diniz, K. M., Leal, C. F., Canto, D., Flores, M. A. P., da Costa Tavares-Filho, J. H., Galembeck, A., Stamford, T. L. M., Stamford-Arnaud, T. M., and Stamford, T. C. M. (2018). Effects of Fungal Chitosan Nanoparticles as Eco-Friendly Edible Coatings on The Quality of Postharvest Table Grapes. Postharvest Biology and Technology, 139, 56–66.
  32. [32] Nakilcioğlu-Taş, E., and Ötleş, S. (2020). Kinetics of Colour and Texture Changes of Button Mushrooms (Agaricus bisporus) Coated with Chitosan During Storage at Low Temperature. Anais Da Academia Brasileira de Ciencias, 92(2), 1–15.
  33. [33] Im, J. H., Yu, H. W., Park, C. H., Kim, J. W., Shin, J. H., Jang, K. Y., and Park, Y. J. (2023). Phenylalanine Ammonia-Lyase: A Key Gene for Color Discrimination of Edible Mushroom Flammulina velutipes. Journal of Fungi, 9(3), 1–13.
  34. [34] Ali, S., Anjum, M. A., Nawaz, A., Naz, S., Hussain, S., Ejaz, S., and Sardar, H. (2020). Effect of Pre-Storage Ascorbic Acid and Aloe Vera Gel Coating Application on Enzymatic Browning and Quality of Lotus Root Slices. Journal of Food Biochemistry, 44(3), 1–11.
  35. [35] Aminan, A. W., Juan, W. M., Rahman, R. A., Latif, N. A. M., and Ramli, A. N. M. (2020). Enzymatic Reaction by Combination of Bromelain and Aloe Vera Extracts as Anti-Browning Agent. Materials Science Forum, 981, 228–233.
  36. [36] Min, T., Niu, L. F., Xie, J., Yi, Y., Wang, L. M., Ai, Y. W., and Wang, H. X. (2020). Effects of Vacuum Packaging on NAC Gene Expression in Fresh-Cut Lotus Root. Journal of the American Society for Horticultural Science, 145(1), 36–44.
  37. [37] Ghosh, M., Hemanth, P., Rahman, M., Kardile, N. B., Gaikwad, S. T., and Kumar, S. (2024). Advancement and Effectiveness of Aloe vera (Aloe barbadense miller) and Sodium Alginate Based Natural Coatings for Extending the Shelf Life of Fruits and Vegetables. European Journal of Nutrition & Food Safety, 16(11), 109–129.
  38. [38] Flores-López, M. L., Vieira, J. M., Rocha, C. M. R., Lagarón, J. M., Cerqueira, M. A., Jasso de Rodríguez, D., and Vicente, A. A. (2024). Postharvest Quality Improvement of Tomato (Solanum lycopersicum L.) Fruit Using a Nanomultilayer Coating Containing Aloe vera. Foods, 13(1).
  39. [39] Wibowo, C., Salsabila, S., Muna, A., Rusliman, D., and Wasisto, H. S. (2023). Advanced Biopolymer‐Based Edible Coating Technologies for Food Preservation and Packaging. Comprehensive Reviews in Food Science and Food Safety, 23(1).
  40. [40] Lin, C.-Y., Jung, J., and Zhao, Y. (2023). Cellulose Nanofiber-Based Emulsion Coatings with Enhanced Hydrophobicity and Surface Adhesion for Preserving Anthocyanins Within Thermally Processed Blueberries Packed in Aqueous Media. Journal of Food Process Engineering, 46(3).
  41. [41] de Souza, H. K. S., Guimarães, M., Mateus, N., de Freitas, V., and Cruz, L. (2024). Chitosan/Polyvinyl Alcohol-Based Biofilms Using Ternary Deep Eutectic Solvents towards Innovative Color-Stabilizing Systems for Anthocyanins. International Journal of Molecular Sciences, 25(11), 1–24.
  42. [42] Rossi, M. (2015). Chilled Foods: Packaging Under Vacuum. In Encyclopedia of Food and Health (1st ed., Vol. 2). Elsevier Ltd.
  43. [43] Guo, R., Liu, T., Guo, C., Chen, G., Fan, J., and Zhang, Q. (2022). Carotenoid Biosynthesis Is Associated with Low-Temperature Adaptation in Rhodosporidium kratochvilovae. BMC Microbiology, 22(1), 1–9.
  44. [44] Hutchings, J. B. (1999). In: Food Color Appearance. 2nd Ed. Springer.
  45. [45] Ge, X., Cao, T., Yi, L., Yao, S., Zeng, K., and Deng, L. (2022). Low and High Storage Temperature Inhibited The Coloration of Mandarin Fruit (Citrus unshiu Marc.) with Different Mechanism. Journal of the Science of Food and Agriculture, 102(15), 6930–6941.
  46. [46] Guo, W., Tang, X., Zhang, Q., Zhao, J., Mao, B., and Zhang, H. (2024). Recent Advance in Quality Preservation of Non-Thermal Preservation Technology of Fresh Mushroom: A Review. Critical Reviews in Food Science and Nutrition, 64(22), 7878–7894.
  47. [47] Moon, K. M., Kwon, E. Bin, Lee, B., and Kim, C. Y. (2020). Recent Trends in Controlling the Enzymatic Browning of Fruit and Vegetable Products. Molecules, 25(2754), 1–15.
  48. [48] Teribia, N., Buvé, C., Bonerz, D., Aschoff, J., Goos, P., Hendrickx, M., and Van Loey, A. (2021). The Effect of Thermal Processing and Storage on The Color Stability of Strawberry Puree Originating From Different Cultivars. Lwt, 145, 1–10.
  49. [49] Geng, Y. (2024). Mechanism and Examples of Maillard Reaction. International Journal of Food Science and Agriculture, 8(1), 54–58.
  50. [50] Tilley, A., McHenry, M. P., McHenry, J. A., Solah, V., and Bayliss, K. (2023). Enzymatic Browning: The Role of Substrates in Polyphenol Oxidase Mediated Browning: Mechanisms of Enzymatic Browning. Current Research in Food Science, 7(100623), 1–10.