Main Article Content
Abstract
Acne vulgaris is a common dermatological disorder that significantly impacts quality of life, yet its complex pathogenesis remains incompletely understood, contributing to the variability in clinical presentation and treatment response. This review summarizes recent advances in omics-based research on acne vulgaris and explores how these findings support the development of targeted therapy. A systematic literature search was conducted in PubMed using the keywords “acne genomic,” “acne transcriptomic,” “acne proteomic,” and “acne metabolomic.” Original research articles published in English, available in full text, and published between 2015 and 2025 were included. After screening for relevance and removing duplicates, 17 studies met the inclusion criteria. Additional relevant articles were also referenced to complement the discussion. The selected studies show that large-scale molecular analysis provides a more comprehensive understanding of the molecular mechanisms underlying acne vulgaris. These findings enable the identification of novel biomarkers, better insight into pathological pathways, and the development of more targeted therapeutic strategies. Further studies are needed to validate these findings and translate them into improved strategies for the diagnosis, prevention, and treatment of acne vulgaris.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Xu, S., Zhu, Y., Hu, H., Liu, X., Li, L., Yang, B., ... & Deng, D. (2021). The analysis of acne increasing suicide risk. Medicine, 100(24), e26035.
- [2] Zhu, Z., Zhong, X., Luo, Z., Liu, M., Zhang, H., Zheng, H., & Li, J. (2025). Global, regional and national burdens of acne vulgaris in adolescents and young adults aged 10–24 years from 1990 to 2021: a trend analysis. British Journal of Dermatology, 192(2), 228-237.
- [3] Vasam, M., Korutla, S., & Bohara, R. A. (2023). Acne vulgaris: A review of the pathophysiology, treatment, and recent nanotechnology based advances. Biochemistry and Biophysics Reports, 36, 101578.
- [4] Dai, X., & Shen, L. (2022). Advances and trends in omics technology development. Frontiers in Medicine, 9, 911861.
- [5] Pathak, R. K., Singh, D. B., & Singh, R. (2022). Introduction to basics of bioinformatics. In Bioinformatics (pp. 1-15). Academic Press.
- [6] Hasanzad, M., Sarhangi, N., Ehsani Chimeh, S., Ayati, N., Afzali, M., Khatami, F., ... & Aghaei Meybodi, H. R. (2022). Precision medicine journey through omics approach. Journal of Diabetes & Metabolic Disorders, 21(1), 881-888.
- [7] Rusiñol, L., & Puig, L. (2024). Multi-omics approach to improved diagnosis and treatment of atopic dermatitis and psoriasis. International Journal of Molecular Sciences, 25(2), 1042.
- [8] He, J., & Jia, Y. (2022). Application of omics technologies in dermatological research and skin management. Journal of Cosmetic Dermatology, 21(2), 451-460.
- [9] Hasin, Y., Seldin, M., & Lusis, A. (2017). Multi-omics approaches to disease. Genome biology, 18(1), 83.
- [10] Dreno, B., Dekio, I., Baldwin, H., Demessant, A. L., Dagnelie, M. A., Khammari, A., & Corvec, S. (2024). Acne microbiome: From phyla to phylotypes. Journal of the European Academy of Dermatology and Venereology, 38(4), 657-664.
- [11] Pattan, V., Kashyap, R., Bansal, V., Candula, N., Koritala, T., & Surani, S. (2021). Genomics in medicine: A new era in medicine. World Journal of Methodology, 11(5), 231.
- [12] Mitchell, B. L., Saklatvala, J. R., Dand, N., Hagenbeek, F. A., Li, X., Min, J. L., ... & Simpson, M. A. (2022). Genome-wide association meta-analysis identifies 29 new acne susceptibility loci. Nature communications, 13(1), 702.
- [13] Podbielski, A., Köller, T., Warnke, P., Barrantes, I., & Kreikemeyer, B. (2024). Whole genome sequencing distinguishes skin colonizing from infection-associated Cutibacterium acnes isolates. Frontiers in Cellular and Infection Microbiology, 14, 1433783.
- [14] Deng, M., Odhiambo, W. O., Qin, M., To, T. T., Brewer, G. M., Kheshvadjian, A. R., ... & Agak, G. W. (2024). Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Communication and Signaling, 22(1), 400.
- [15] Yang, X., Wu, W., Peng, M., Shen, Q., Feng, J., Lai, W., ... & Zhang, Y. (2019). Identity-by-descent analysis reveals susceptibility loci for severe acne in Chinese Han cohort. Journal of Investigative Dermatology, 139(9), 2049-2051.
- [16] Teder-Laving, M., Kals, M., Reigo, A., Ehin, R., Objärtel, T., Vaht, M., ... & Kingo, K. (2024). Genome-wide meta-analysis identifies novel loci conferring risk of acne vulgaris. European Journal of Human Genetics, 32(9), 1136-1143.
- [17] Kim, S. K., Lee, M., Lee, Y. Q., Lee, H. J., Rho, M., Kim, Y., ... & Lee, D. Y. (2023). Genome-scale metabolic modeling and in silico analysis of opportunistic skin pathogen Cutibacterium acnes. Frontiers in Cellular and Infection Microbiology, 13, 1099314.
- [18] Sivakamavalli, J., & Vaseeharan, B. (2020). An Overview of Omics Approaches: Concept, Methods and Perspectives.
- [19] Li, M., Gao, X., Miao, T., & Sun, H. (2023). Identification of biomarkers of acne based on transcriptome analysis and combined with network pharmacology to explore the therapeutic mechanism of Jinhuang ointment. Medicine, 102(44), e35642.
- [20] Sennett, M. L., Agak, G. W., Thiboutot, D. M., & Nelson, A. M. (2024). Transcriptomic Analyses Predict Enhanced Metabolic Activity and Therapeutic Potential of mTOR Inhibitors in Acne-Prone Skin. JID Innovations, 4(6), 100306.
- [21] Zhao, C. X., Wang, S. L., Li, H. X., & Li, X. (2023). Integration of Single-Cell Transcriptomics Data Reveal Differences in Cell Composition and Communication in Acne. Clinical, Cosmetic and Investigational Dermatology, 3413-3426.
- [22] Wang, H., Dang, T., Feng, J., Wu, W., He, L., & Yang, J. (2023). Identification of differentially methylated genes for severe acne by genome-wide DNA methylation and gene expression analysis. Epigenetics, 18(1), 2199373.
- [23] Chen, C., Hou, J., Tanner, J. J., & Cheng, J. (2020). Bioinformatics methods for mass spectrometry-based proteomics data analysis. International journal of molecular sciences, 21(8), 2873.
- [24] Shuken, S. R. (2023). An introduction to mass spectrometry-based proteomics. Journal of proteome research, 22(7), 2151-2171.
- [25] Carnielli, C. M., Winck, F. V., & Leme, A. F. P. (2015). Functional annotation and biological interpretation of proteomics data. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics, 1854(1), 46-54.
- [26] Yu, Y., Champer, J., Agak, G. W., Kao, S., Modlin, R. L., & Kim, J. (2016). Different Propionibacterium acnes phylotypes induce distinct immune responses and express unique surface and secreted proteomes. Journal of Investigative Dermatology, 136(11), 2221-2228.
- [27] Jiang, M., Fan, X., Jiang, Z., Chen, H., Liu, Y., Yu, T., ... & Ma, Y. (2022). Comparative proteomic analysis of membrane vesicles from clinical C. acnes isolates with differential antibiotic resistance. Clinical, Cosmetic and Investigational Dermatology, 703-712.
- [28] Xu, D., Yang, X., Wu, W., & Yang, J. (2024). Identification of Novel Protein Biomarkers and Drug Targets for Acne Vulgaris by Integrating Human Plasma Proteome with Genome-Wide Association Data. Journal of Inflammation Research, 4431-4441.
- [29] Chandramouli, K., & Qian, P. Y. (2009). Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Human genomics and proteomics: HGP, 2009, 239204.
- [30] Dupree, E. J., Jayathirtha, M., Yorkey, H., Mihasan, M., Petre, B. A., & Darie, C. C. (2020). A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes, 8(3), 14.
- [31] Johnson, C. H., Ivanisevic, J., & Siuzdak, G. (2016). Metabolomics: beyond biomarkers and towards mechanisms. Nature reviews Molecular cell biology, 17(7), 451-459.
- [32] Anwardeen, N. R., Diboun, I., Mokrab, Y., Althani, A. A., & Elrayess, M. A. (2023). Statistical methods and resources for biomarker discovery using metabolomics. BMC bioinformatics, 24(1), 250.
- [33] Azad, R. K., & Shulaev, V. (2019). Metabolomics technology and bioinformatics for precision medicine. Briefings in bioinformatics, 20(6), 1957-1971.
- [34] Kim, M. H., Ha, I. J., Kim, E., & Kim, K. (2020). Integrated targeted serum metabolomic profile and its association with gender, age, disease severity, and pattern identification in acne. PloS one, 15(1), e0228074.
- [35] Wu, Y. Y., Shen, W. B., Li, J. W., Liu, M. Y., Hu, W. L., Wang, S., ... & Qin, Q. R. (2023). Targeted metabolomics reveals the association between central carbon metabolism and pulmonary nodules. Plos one, 18(12), e0295276.
- [36] Okoro, O. E., Adenle, A., Ludovici, M., Truglio, M., Marini, F., & Camera, E. (2021). Lipidomics of facial sebum in the comparison between acne and non-acne adolescents with dark skin. Scientific reports, 11(1), 16591.
- [37] Guo, Y., Luo, L., Zhu, J., & Li, C. (2023). Multi-omics research strategies for psoriasis and atopic dermatitis. International Journal of Molecular Sciences, 24(9), 8018.
- [38] Pammi, M., Aghaeepour, N., & Neu, J. (2023). Multiomics, artificial intelligence, and precision medicine in perinatology. Pediatric research, 93(2), 308-315.
- [39] Putignani, L., Gasbarrini, A., & Dallapiccola, B. (2019). Potential of multiomics technology in precision medicine. Current opinion in gastroenterology, 35(6), 491-498.
- [40] Raza, A., Salehi, H., Bashir, S., Tabassum, J., Jamla, M., Charagh, S., ... & Varshney, R. K. (2024). Transcriptomics, proteomics, and metabolomics interventions prompt crop improvement against metal (loid) toxicity. Plant cell reports, 43(3), 80.
- [41] Vitorino, R. (2024). Transforming clinical research: the power of high-throughput omics integration. Proteomes, 12(3), 25.
- [42] Koppad, S., B, A., Gkoutos, G. V., & Acharjee, A. (2021). Cloud computing enabled big multi-omics data analytics. Bioinformatics and biology insights, 15, 11779322211035921.
