Main Article Content

Abstract

The functional ability of the brain will decline progressively during aging which usually involves changes in plasticity. BDNF is one of the neurotrophins that regulates plasticity via TrkB receptors. So the potential of Moringa oleifera leaf and seed oil extracts was identified as neuroprotective on the interaction of TrkB receptors with molecular docking. The active compounds of Moringa oleifera leaf extract and seed oil were obtained from literature studies. Drug-likeness and ADMETox analysis were carried out using the SwissAdme and the AdmetSAR webserver. The molecular docking was carried out using the Pyrx Vina application and visualization is done using the Discovery Studio Biovia application. The docking results showed the best compounds namely luteolin, stigmasterol, and moringin as a marker compound and showed the interaction of hydrogen and hydrophobic bonds at the active site of the prediction results. So it can be concluded that compounds in the leaves and seed oil of Moringa oleifera, namely luteolin, stigmasterol, and moringin are predicted as ingredients that can activate TrkB receptors in the aging process.

Keywords

Moringa oleifera, neuroprotective, receptor, molecular docking

Article Details

How to Cite
1.
Muhamad Sadam Safutra, Fadilah, Wawaimuli Arozal, Agian Jeffilano Barinda. Identification of Active Compounds of Leaf Extract and Seed Oil of Moringa oleifera in TrkB Receptor as Neuroprotective by Molecular Docking. EKSAKTA [Internet]. 2024Jun.30 [cited 2024Jul.2];25(02):151-63. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/442

References

  1. Wyss-Coray, T. (2016). Ageing, neurodegeneration and brain rejuvenation. Nature, 539(7628), 180-186.
  2. Zhang, W., Xiao, D., Mao, Q., & Xia, H. (2023). Role of neuroinflammation in neurodegeneration development. Signal Transduction and Targeted Therapy, 8(1), 267.
  3. Mattson, M. P., & Arumugam, T. V. (2018). Hallmarks of brain aging: adaptive and pathological modification by metabolic states. Cell metabolism, 27(6), 1176-1199.
  4. Blinkouskaya, Y., Caçoilo, A., Gollamudi, T., Jalalian, S., & Weickenmeier, J. (2021). Brain aging mechanisms with mechanical manifestations. Mechanisms of ageing and development, 200, 111575.
  5. Kirkwood, T. B. (2005). Understanding the odd science of aging. Cell, 120(4), 437-447.
  6. Ferraro, K., & Carr, D. (Eds.). (2021). Handbook of aging and the social sciences. Academic Press.
  7. Sikora, E., Bielak-Zmijewska, A., Dudkowska, M., Krzystyniak, A., Mosieniak, G., Wesierska, M., & Wlodarczyk, J. (2021). Cellular senescence in brain aging. Frontiers in aging neuroscience, 13, 646924.
  8. Zia, A., Pourbagher-Shahri, A. M., Farkhondeh, T., & Samarghandian, S. (2021). Molecular and cellular pathways contributing to brain aging. Behavioral and Brain Functions, 17(1), 6.
  9. Cole, G. M., Teter, B., & Frautschy, S. A. (2007). Neuroprotective effects of curcumin. The molecular targets and therapeutic uses of curcumin in health and disease, 197-212.
  10. Lee, K. H., Cha, M., & Lee, B. H. (2020). Neuroprotective effect of antioxidants in the brain. International journal of molecular sciences, 21(19), 7152.
  11. Abd Rani, N. Z., Husain, K., & Kumolosasi, E. (2018). Moringa genus: a review of phytochemistry and pharmacology. Frontiers in pharmacology, 9, 108.
  12. Oguntibeju, O. O., Aboua, G. Y., & Omodanisi, E. I. (2020). Effects of Moringa oleifera on oxidative stress, apoptotic and inflammatory biomarkers in streptozotocin-induced diabetic animal model. South African Journal of Botany, 129, 354-365.
  13. Mohamed, A. A. R., Metwally, M. M., Khalil, S. R., Salem, G. A., & Ali, H. A. (2019). Moringa oleifera extract attenuates the CoCl2 induced hypoxia of rat's brain: expression pattern of HIF-1α, NF-kB, MAO and EPO. Biomedicine & Pharmacotherapy, 109, 1688-1697.
  14. Islam, Z., Islam, S. M., Hossen, F., Mahtab-ul-Islam, K., Hasan, M. R., & Karim, R. (2021). Moringa oleifera is a prominent source of nutrients with potential health benefits. International Journal of Food Science, 2021.
  15. Davidson, R. J., & McEwen, B. S. (2012). Social influences on neuroplasticity: stress and interventions to promote well-being. Nature neuroscience, 15(5), 689-695.
  16. Price, R. B., & Duman, R. (2020). Neuroplasticity in cognitive and psychological mechanisms of depression: an integrative model. Molecular psychiatry, 25(3), 530-543.
  17. Kaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current opinion in neurobiology, 10(3), 381-391.
  18. Numakawa, T., & Odaka, H. (2022). The role of neurotrophin signaling in age-related cognitive decline and cognitive diseases. International Journal of Molecular Sciences, 23(14), 7726.
  19. Rizwani, G. H., Shareef, H., Huma, A., & Hasan, S. F. (2014). Antihyperglycemic and hypolipidemic effects of Hibiscus schizopetalus (Mast) Hook in alloxan-induced diabetic rats. Pak. J. Pharm. Sci, 27(1), 83-89.
  20. Wong, S., Chan, E. W., & Chan, H. (2016). A review on the phytochemistry and pharmacology of two lesser-known Hibiscus species: H. taiwanensis and H. schizopetalus. Int. J. Pharmacogn. Phytochem. Res, 8, 1341-1346.
  21. Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical biology: methods and protocols, 243-250.
  22. Kezia, I., Erlina, L., Mudjihartini, N., & Fadilah, F. (2023). Molecular Simulation for Screening Bioactive Compounds as Potential Candidate for Alzheimer’s Disease. EKSAKTA: Berkala Ilmiah Bidang MIPA, 24(02), 179-192.
  23. Li, Q., & Shah, S. (2017). Structure-based virtual screening. Protein Bioinformatics: From Protein Modifications and Networks to Proteomics, 111-124.
  24. Kimber, T. B., Chen, Y., & Volkamer, A. (2021). Deep learning in virtual screening: recent applications and developments. International journal of molecular sciences, 22(9), 4435.
  25. Pathak, M., Ojha, H., Tiwari, A. K., Sharma, D., Saini, M., & Kakkar, R. (2017). Design, synthesis and biological evaluation of antimalarial activity of new derivatives of 2, 4, 6-s-triazine. Chemistry Central Journal, 11, 1-11.
  26. Westbrook, J., Feng, Z., Jain, S., Bhat, T. N., Thanki, N., Ravichandran, V., ... & Berman, H. M. (2002). The protein data bank: unifying the archive. Nucleic acids research, 30(1), 245-248.
  27. Rozaliyani, A., Wibowo, H., & Damayanti, T. (2023). Biological Activity of Der p 1 and Der f 1 in Allergic Asthma and Their Contribution in Inflammation and the Role of Anti-inflammation in Allergic Asthma. EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(04), 560-573.
  28. Aziz, A., Andrianto, D., & Safithri, M. (2022). Penambatan Molekuler Senyawa Bioaktif Daun Wungu (Graptophyllum Pictum (L) Griff) sebagai Inhibitor Tirosinase. Indonesian Journal of Pharmaceutical Science and Technology, 9(2), 96-107.
  29. Najibi, S. M., Maadooliat, M., Zhou, L., Huang, J. Z., & Gao, X. (2017). Protein structure classification and loop modeling using multiple Ramachandran distributions. Computational and structural biotechnology journal, 15, 243-254.
  30. Sumitha, A., Devi, P. B., Hari, S., & Dhanasekaran, R. (2020). COVID-19—In silico structure prediction and molecular docking studies with doxycycline and quinine. Biomed. Pharmacol. J, 13, 1185-1193.
  31. Chagas, C. M., Moss, S., & Alisaraie, L. (2018). Drug metabolites and their effects on the development of adverse reactions: Revisiting Lipinski’s Rule of Five. International journal of pharmaceutics, 549(1-2), 133-149.
  32. Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced drug delivery reviews, 23(1-3), 3-25.
  33. Kramer, J. (2014). Label Review Manual Chapter 7: Precautionary Statements Label Review Manual.
  34. Gilbert, S. G. (2020). Precautionary principle. In Information Resources in Toxicology (pp. 489-494). Academic Press.
  35. Mardianingrum, R., Yusuf, M., Hariono, M., Mohd Gazzali, A., & Muchtaridi, M. (2022). α-Mangostin and its derivatives against estrogen receptor alpha. Journal of Biomolecular Structure and Dynamics, 40(6), 2621-2634.
  36. Ruswanto, R., Mardianingrum, R., & Yanuar, A. (2022). Computational studies of thiourea derivatives as anticancer candidates through inhibition of Sirtuin-1 (SIRT1). Jurnal Kimia Sains dan Aplikasi, 25(3), 87-96.