Main Article Content

Abstract

The red ginger plant is a spice plant used in traditional medicine and has the potential to be antibacterial. This research aims to isolate and identify red ginger essential oil, extract red ginger, and test antibacterial activity against Staphylococcus aureus and Escherichia coli bacteria. Red ginger essential oil is obtained by steam distillation, while red ginger extract is obtained using the maceration method with methanol solvent. Red ginger essential oil yielded 0.13%, and red ginger extract was 12%. The phytochemical test results of red ginger essential oil contain tannin and sopinin, while red ginger extract contains flavonoids, tannin and saponin. The results of analysis using GCMS show that there are 31 components of red ginger essential oil, with the main compounds 2-butanone-4-(3-hydroxy-2-methoxyphenyl) (21.51%) and Zingerone (15.10%). The GCMS test results for red ginger methanol extract obtained 31 components, with the main components being citral (24.05%). The results of antibacterial testing of red ginger extract did not provide activity in inhibiting bacteria, whereas red ginger essential oil at a concentration of 100% provided inhibition of the growth of E. coli bacteria (14.00 ± 2.00 mm) and at a concentration of 40% for S. aureus bacteria (22.67 ± 2.31 mm).

Keywords

Red ginger, red ginger extract, antibacterial, GCMS analysis, tannin

Article Details

How to Cite
1.
Kapelle IBD, Mauhurry MF, Neite PN. Testing the Antibacterial Activity of Red Ginger Essential Oil and Red Ginger Methanol Extract. EKSAKTA [Internet]. 2024Mar.30 [cited 2024Nov.21];25(01):14-23. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/469

References

  1. Breijyeh, Z., & Karaman, R. (2023). Design and Synthesis of Novel Antimicrobial Agents. Antibiotics, (12), 628.
  2. Zimmermann, S., Klinger-Strobel, M., Bohnert, J. A., Wendler, S., Rödel, J., Pletz, M. W., Löfer, B., & Tuchscherr, L. (2019). Clinically Approved Drugs Inhibit the Staphylococcus aureus Multidrug NorA Efux Pump and Reduce Biolm Formation. Front. Microbiol, (10), 2762.
  3. Gitirana de Santana, J. D., Santos-Mayorga, O. A., Florencio, J. R., Oliveira, M. C., Almeida, L. M. S., Xavier, J. O. L., Zimmermann-Franco, D., Macedo, G., Ferreira, A. L. P., Sousa, O. V., et al. (2023). Vernonia polyanthes Less. (Asteraceae Bercht. & Presl), a Natural Source of Bioactive Compounds with Antibiotic Effect against Multidrug-Resistant Staphylococcus aureus. Antibiotics, (12), 622.
  4. Liu, C., Cheng, F., Aisa, H. A., & Maiwulanjiang, M. (2023). Comprehensive Study of Components and Antimicrobial Properties of Essential Oil Extracted from Carum carvi L. Seeds. Antibiotics. (12), 591.
  5. Ma, M., Tao, L., Li, X., Liang, Y., Li, J., Wang, H., Jiang, H., Dong, J., Han, D., & Du, T. (2022). Changes in molecular characteristics and antimicrobial resistance of invasive Staphylococcus aureus infection strains isolated from children in Kunming, China during the COVID-19 epidemic. Front. Microbiol, (13), 944078.
  6. Wang, M., Buist, G., & Maarten van Dijl, J. (2022). Staphylococcus aureus cell wall maintenance – the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiology Reviews, 46(5), 1-19.
  7. Haag, A. F., Fitzgerald, J. R., & Penadés, J. R. 2019. Staphylococcus aureus in animals. Microbiol Spectrum, 7(3), 60.
  8. Linz, M. S., Mattappallil, A., Finkel, D., & Parker, D. (2023). Clinical Impact of Staphylococcus aureus Skin and Soft Tissue Infections. Antibiotics, (12), 557.
  9. Raineri, E. J. M., Maas, S., Wang, M., Brushett, S., Medina, L. M. P., Escandell, N. S., Altulea, D., Raangs, E., de Jong, A., Murguia, E. V., Feil, E. J., Friedrich, A. W., Buist, G., Becher, D., Garcia‑Cobos, S., Couto, N., & van Dijl, J. M. (2022). Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits—a critical role of host barrier integrity. Microbiome, (10), 239.
  10. Sarowska, J., Futoma‑Koloch, B., Jama‑Kmiecik, A., Frej‑Madrzak, M., Ksiazczyk, M., Bugla‑Ploskonska, G., & Choroszy‑Krol, I. (2019). Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog, (11), 10.
  11. Antunes, A., Joao, A. L., Nunes, T., & Henriques, A. R. (2023). Burden of disease estimation based on Escherichia coli quantification in ready-to-eat meals served in Portuguese institutional canteens. LWT - Food Science and Technology, (174), 114450.
  12. Daga, A. P., Koga, V. L., Soncini, J. G. M., de Matos, C. M., Perugini, M. R. E., Pelisson, M., Kobayashi, R. K. T., & Vespero, E. C. (2019). Escherichia coli Bloodstream Infections in Patients at a University Hospital: Virulence Factors and Clinical Characteristics. Front. Cell. Infect. Microbiol, (9), 191.
  13. Ebenezer, F. N., & Pallen, M. J. (2022). The microbial ecology of Escherichia coli in the vertebrate gut. FEMS Microbiology Reviews, 46(3), 1–22.
  14. Bonten, M., Johnson, J. R., van den Biggelaar, A. H. J., Georgalis, L., Geurtsen, J., de Palaciosm, P. I., Gravenstein, S., Verstraeten, T., Hermans, P., & Poolman, J. T. (2019). Epidemiology of Escherichia coli Bacteremia: A Systematic Literature Review. Clinical Infectious Diseases, (72).
  15. Pokharel, P., Dhakal, S., & Dozois, C. M. (2023). The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms, (11), 344.
  16. Naghavi, Mohsen. (2022). Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. Lancet, (399), 629–55.
  17. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2019). Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 69(6), 546-556.
  18. Hua, L. Y., Ning, Z., & Yuebao, N. (2022). Determination of SOD in black ginger extract and its effect on the liver of rats with type 2 diabetes. Food Sci. Technol, Campinas, (42), e115021.
  19. Teng, H., Seuseu, K. T., Lee, W. Y., & Chen, L. (2019). Comparing the effects of microwave radiation on 6-gingerol and 6-shogaol from ginger rhizomes (Zingiber officinale Rosc). PLoS ONE, 14(6), e0214893.
  20. Unuofin, J. O., Masuku, N. P., Paimo, O. K., & Lebelo, S. L. (2021). Ginger from Farmyard to Town: Nutritional and Pharmacological Applications. Front. Pharmacol, (12), 779352.
  21. Setyawan, A. A., Susidarti, R. A., Purwanto., Windarsih, A., Rahmawati, N., Sholikhah, I. K. M., & Rohman, A. (2022). Review on ginger (Zingiber officinale Roscoe): phytochemical composition, biological activities and authentication analysis. Food Research, 6(4), 443 – 454.
  22. Anh, N. H., Kim, S. J., Long, N. P., Min, J. U., Yoon, Y. C., Lee, E. G., Kim, M., Kim, T. J., Yang, Y. Y., Son, E. Y., Yoon, S. J., Diem, N. C., Kim, H. M., & Kwon, S. W. (2019). Ginger on Human Health: A Comprehensive Systematic Review of 109 Randomized Controlled Trials. Nutrients, (12), 157.
  23. Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber o_cinale Roscoe). Foods, (8), 185.
  24. Claudya, R. P., Sugiaman, H. A., Labiba S.I, Utari M.P, Gunawan D. 2023. The therapeutic effects of ginger extract on gastrointestinal disorders to adults. Science Midwifery. 11:1.
  25. Zhang, S., Kou, X., Zhao, H., Mak, K. K., Balijepalli, M. K., & Pichika, M. R. (2022). Zingiber officinale var. rubrum: Red Ginger’s Medicinal Uses. Molecules, (27), 775.
  26. Juariah, S., Bakar, F. I. A., Bakar, M. F. A., Endrini, S., Kartini, S., Mohamad, A., & Hanafi, A. F. M. (2023). Antibacterial Activity of Red Ginger (Zingiber officinalevar. rubrum) and Black Turmeric (Curcuma caesia) Extracts as Growth Inhibitors of Klebsiella pneumonia. Trop J Nat Prod Res, 7(6), 3658-3665.
  27. Zhang, C., Xie ,Y., Qiu, W., Mei, J., & Xie, J. (2023). Antibacterial and Antibiofilm Efficacy and Mechanism of Ginger (Zingiber officinale) Essential Oil against Shewanella putrefaciens. Plants, (12),1720.
  28. Adesola, R. O., Ogbole, E., Itodo, A. E., Salami, O., & Abdulazeez, M. D. (2021). Aueous Extracts of Ginger (Zingiber officinale Roscoe) and Garlic (Allium satium L.) Bulbs: Phytochemical Screening and In vivo Antitrypanosomal Effect. World News of Natural Sciences, (37), 135-150.
  29. Tritanti, A., & Pranita, I. (2019). The making of red ginger (zingiber officinale rovb. var. rubra) natural essential oil. Journal of Physics: Conference Series, (1273), 012053.
  30. Wahid, R. A. H., Purwaningsih, O., & Pamungkas, P. B. (2023). Phytochemical Profiling and Antioxidant Activities of Red Ginger (Zingiber officinalevar. rubrum) Cultivated Eco-Farming. Trop J Nat Prod Res, 7(9), 3968-3973.
  31. Badrunanto, Wahyunia, W. T., Farida, M., Batubara, I., & Yamauchi, K. (2024). Antioxidant components of the three different varieties of Indonesian ginger essential oil: In vitro and computational studies. Food Chemistry Advances 4, 100558.
  32. Kamal, G. M., Nazi, N., Sabir, A., Saqib, M., Zhang, X., Jiang, B., Khan, J., Noreen, A., Uddin, J., Murtaza, S. (2023). Yield and Chemical Composition of Ginger Essential Oils as Affected by Inter-Varietal Variation and Drying Treatments of Rhizome. Separations, (10), 186.
  33. Indiarto, R., Subroto, E., Angeline, & Selly. (2021) Ginger rhizomes (Zingiber officinale) functionality in food and health perspective: a review. Food Research, 5(1), 497 – 505.
  34. Suciyati, S. W., Sukrasno., Kurniati, N. F., & Adnyana, I. K. (2021). Antioxidant and Anti-Inflammatory Activity of Red Ginger (Zingiber officinale Roscoe var. Sunti Val) Essential Oil Distillation Residues. Egypt. J. Chem, 64(9), 5031 – 5035.
  35. Kwiecinski, J. M., & Horswill, A. R. (2020). Staphylococcus aureus bloodstream infections: pathogenesis and regulatory mechanisms. Curr Opin Microbiol, (53), 51–60.
  36. Chukwuma, I. F., Uchendu, N. O., Asomadu, R. O., Ezeorba, W. F. C., & Ezeorba, T. P. C. (2023). African and Holy Basil - a review of ethnobotany, phytochemistry, and toxicity of their essential oil: Current trends and prospects for antimicrobial/anti-parasitic pharmacology. Arabian Journal of Chemistry, 16(7), 104870.