Main Article Content

Abstract

This study aims to make ZnO semiconductor nanoparticles using annealing temperature variations for dye synthesized solar cells, identify the structure and particle size and surface morphology using SEM-EDX and UV-VIS to determine the wavelength and absorbance values. In the gel-combustion method, three samples were made with varying annealing temperatures of 700⁰C, 800⁰C, and 900⁰C, respectively. The annealing temperature variation shows the difference in SEM test results, where the higher the annealing temperature, the smaller the particle size. EDX test results show that ZnO has been formed. In the UV-VIS characterization results for the three samples have different transmittance values and wavelengths from samples without dye, ZnO doping chlorophyll. Based on XRD data, the higher the calcination temperature, the smaller the particle size, and the distribution of particle size at each increase in annealing temperature. Based on the results of SEM analysis obtained that the particle size is getting smaller with increasing annealing temperature.  According to the UV-Vis analysis results obtained that the addition of chlorophyll extract does not have a significant effect about wavelength 370 nm on the transmittance value of each sample, so the best absorbance is owned by the ZnO doping dye sample.

Keywords

annealing, ZnO, gel-combustion, chlorophyll

Article Details

How to Cite
1.
Supu I, Aulia Fitrah Ramadhani, Bunga Tang, Haerul Ahmadi, Dewa Gede Eka Setiawan. Synthesis and Characterization of ZnO Semiconductor Nanoparticles with Annealing Temperature Variation for Dye Synthesized Solar Cell Application. EKSAKTA [Internet]. 2024Sep.30 [cited 2024Oct.9];25(03):311-22. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/467

References

  1. Siagian, S. M. (2021). Analisis Semikonduktor zno: cu terhadap efisiensi dye Sensitized Solar cell menggunakan ekstrak alami. Jurnal ELEMENTER (Elektro dan Mesin Terapan), 7(2), 51-57.
  2. Tyona, M. D., Osuji, R. U., Ezema, F. I., Jambure, S. B., & Lokhande, C. D. (2015). Highly efficient natural dye-sensitized photoelectrochemical solar cells based on Cu-doped zinc oxide thin film electrodes. Adv. Appl. Sci. Res, 6, 7-20.
  3. Oktaviani, Y. (2014). Sintesis Lapisan Tipis Semikonduktor dengan Bahan Dasar Tembaga (Cu) Menggunakan Chemical Bath Deposition. Jurnal Fisika Unand, 3(1).
  4. Chaki, S. H., Deshpande, M. P., & Tailor, J. P. (2014). Characterization of CuS nanocrystalline thin films synthesized by chemical bath deposition and dip coating techniques. Thin Solid Films, 550, 291-297.
  5. Ardianto, R., Nugroho, W. A., & Sutan, S. M. (2015). Uji Kinerja Dye Sensitized Solar Cell (DSSC) Menggunakan Lapisan Capacitive Touchscreen Sebagai Substrat dan Ekstrak Klorofil Nannochloropsis Sp. Sebagai Dye Sensitizer dengan Variasi Ketebalan Pasta TiO2. Journal of Tropical Agricultural Engineering and Biosystems-Jurnal Keteknikan Pertanian Tropis dan Biosistem, 3(3), 325-337.
  6. Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: structure, properties, and band gap engineering. Accounts of chemical research, 43(2), 190-200.
  7. Nadaek, S. M., & Susanti, D. (2012). Variasi temperatur dan waktu tahan kalsinasi terhadap unjuk kerja semikonduktor TiO2 sebagai dye sensitized solar cell (DSSC) dengan dye dari ekstrak buah naga merah. Jurnal Teknik ITS, 1(1), F81-F86.
  8. Siregar, N. (2019). The Effect of Post-Heating Time of ZnO Thin Film on the Efficiency of ZnO Hylocereus polyrhizus DSSC. Edelweiss Applied Science and Technology, 3(1), 70-74.
  9. Siddiqui, M. H., Al-Whaibi, M. H., & Mohammad, F. (2015). Nanotechnology and plant sciences. Springer International Publishing Switzerland. DOI, 10, 978-3.
  10. Sanzari, I., Leone, A., & Ambrosone, A. (2019). Nanotechnology in plant science: to make a long story short. Frontiers in Bioengineering and Biotechnology, 7, 120.
  11. Pinem, S. K. (2018). Pengaruh Waktu Tahan Kalsinasi Film Tipis ZnO Terhadap Efisiensi DSSC (Dye Sensitized Solar Cell) Yang Menggunakan Dye dari Buah Naga Merah (Doctoral dissertation, UNIMED).
  12. Wahyuono, R. A., Risanti, I. D. D., & Ihara, H. TITLE Dye-Sensitized Solar Cells (DSSC) Fabrication with TiO2 and ZnO Nanoparticle for High Conversion Efficiency.
  13. Ong, C. B., Ng, L. Y., & Mohammad, A. W. (2018). A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renewable and Sustainable Energy Reviews, 81, 536-551.
  14. Hong, R., Pan, T., Qian, J., & Li, H. (2006). Synthesis and surface modification of ZnO nanoparticles. Chemical Engineering Journal, 119(2-3), 71-81.
  15. Vittal, R., & Ho, K. C. (2017). Zinc oxide based dye-sensitized solar cells: A review. Renewable and Sustainable energy reviews, 70, 920-935.
  16. Haghighatzadeh, A. (2021). Visible-light-active chlorophyll/flavonoid-sensitized ZnO nanoparticles: preparation and optical and photocatalytic studies. Journal of the Australian Ceramic Society, 57(1), 137-147.
  17. Jackson, K. A. (2010). Kinetic processes: crystal growth, diffusion, and phase transitions in materials. John Wiley & Sons.
  18. Markov, I. V. (2016). Crystal growth for beginners: fundamentals of nucleation, crystal growth and epitaxy. World scientific.
  19. Sharma, D. K., Shukla, S., Sharma, K. K., & Kumar, V. (2022). A review on ZnO: Fundamental properties and applications. Materials Today: Proceedings, 49, 3028-3035.
  20. Verploegen, E., Mondal, R., Bettinger, C. J., Sok, S., Toney, M. F., & Bao, Z. (2010). Effects of thermal annealing upon the morphology of polymer–fullerene blends. Advanced Functional Materials, 20(20), 3519-3529.
  21. Hu, J., Wang, X., Zhang, J., Luo, J., Zhang, Z., & Shen, Z. (2021). A general mechanism of grain growth─ Ⅰ. Theory. Journal of Materiomics, 7(5), 1007-1013.
  22. Jackson, K. A. (2010). Kinetic processes: crystal growth, diffusion, and phase transitions in materials. John Wiley & Sons.
  23. Sutanto, H., Nurhasanah, I., Hidayanto, E., & Arifin, Z. (2013). Deposisi Lapisan Tipis Foto Katalis Seng Oksida (ZnO) Berukuran Nano dengan Teknik Penyemprotan dan Aplikasinya untuk Pendegradasi Pewarna Methylene Blue. Jurnal Fisika, 3(1).
  24. Pantò, F., Dahrouch, Z., Saha, A., Patanè, S., Santangelo, S., & Triolo, C. (2021). Photocatalytic degradation of methylene blue dye by porous zinc oxide nanofibers prepared via electrospinning: When defects become merits. Applied Surface Science, 557, 149830.
  25. Newbury*, D. E., & Ritchie, N. W. (2013). Is scanning electron microscopy/energy dispersive X‐ray spectrometry (SEM/EDS) quantitative?. Scanning, 35(3), 141-168.
  26. Howarth, A. J., Peters, A. W., Vermeulen, N. A., Wang, T. C., Hupp, J. T., & Farha, O. K. (2017). Best practices for the synthesis, activation, and characterization of metal–organic frameworks. Chemistry of Materials, 29(1), 26-39.
  27. Kumar, R., Kumar, G., Al-Dossary, O., & Umar, A. (2015). ZnO nanostructured thin films: Depositions, properties and applications—A review. Materials Express, 5(1), 3-23.
  28. Wang, F. H., Chao, J. C., Liu, H. W., & Kang, T. K. (2015). Physical properties of ZnO thin films codoped with titanium and hydrogen prepared by RF magnetron sputtering with different substrate temperatures. Journal of Nanomaterials, 2015(1), 936482.
  29. Zak, A. K., Hashim, A. M., & Esmaeilzadeh, J. (2024). Role of CeO₂ and calcination temperature on the structural and optical properties of (ZnO) ₁-x/(CeO₂) ₓ nanocomposites in the UV–visible region. Ceramics International, 50(2), 4167-4177.
  30. Massoudi, I., Ghrib, T., Al-Otaibi, A. L., Al-Hamadah, K., Al-Malky, S., Al-Otaibi, M., & Al-Yatimi, M. (2020). Effect of yttrium substitution on microstructural, optical, and photocatalytic properties of ZnO nanostructures. Journal of Electronic Materials, 49, 5353-5362.