Main Article Content

Abstract

This research reported Cu2+ un-doped (pure) and doped ZnO semiconductors with variations in Cu2+ concentrations of 3%, 4% and 5% through the sol gel method which aims to determine the morphology and optical properties of ZnO has been investigated. In addition, ZnO film was coated using the doctor blade method with the addition of chlorophyll as a dye sensitizer. Morphological and elemental content tests were carried out using SEM and EDS. The optical properties were analyzed by taking Transmittance data using a UV-Vis Spectrophotometer. SEM analysis with 9900X magnification showed that all samples had small grain sizes and the pores formed were uneven (heterogeneous). The EDS analysis showed that all samples had a higher concentration of zinc by weight than oxygen. UV-Vis Spectrophotometer analysis shows that the transmittance value without dye is lower than using Dye. The addition of Cu2+ concentration affects the morphology and optical properties of ZnO. The higher the addition of Cu2+ added chlorophyll, the higher the absorbance value, so that the transmittance value decreases. The addition of 4% concentration showed the maximum value of chlorophyll as a sensitizer.

Keywords

Semiconductor, doped, morphology, dye, transmittance

Article Details

How to Cite
1.
Supu I, Setiawan DGE, Latief MF, Ismail SYN, Sari YI. Morphology and Optical Properties Analysis of Cu2+ Doped ZnO for Preparation Dye Sensitized Solar Cell (DSSC). EKSAKTA [Internet]. 2022Sep.30 [cited 2023Jan.26];23(03):211-22. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/330

References

  1. R. A. Lubis, A. R. Noviyanti, Y. P. Budiman, R. Hanapratiwi & I. Rahayu. (2018). Pengaruh Pelapisan Xantofil Pada Sel Surya Silikon Terhadap Peningkatan Tegangan Dan Arus Listrik. Chimica et Natura Acta, 4 (3):111.
  2. F. M. Labib & H. Saputro. (2012). Sintesis Lapis Tipis Seng Oksida (ZnO) Nanorods Sebagai Fotoanoda Sel Surya Tersensitasi Zat Warna. Indonesian Journal of Chemical Science, 1(1):85-91
  3. A. Bahtiar, W. P. S. Mustikasari,& L. Safriani. (2015). Pembuatan dan Karakterisasi Lapisan Seng Oksida (ZnO ) Berpori untuk Aplikasi Lapisan Transport Elektron pada Sel-Surya Perovskite. Jurnal Material dan Energi Indonesia. 5(2): 24-28.
  4. K. Y. Astuti. (2018). Pembentukan Nanopartikel TiO2 dengan Metode Bervariasi. Jurnal Jieom, 1(1):19–23.
  5. A. S. Hidayat, M. Rokhmat, & A. Qurthobi. (2014). Pengaruh Suhu dan Kecepatan Putar Spin Coating terhadap Kinerja Sel Surya Organik Berbahan Dasar TiO2. e-Proceeding of Engineering, 1(1):497–510.
  6. I. Trianiza. (2018). Pemanfaatan Ekstrak Kulit Buah Kasturi Sebagai Dye Sensitizer Solar Cell. Jurnal Jieom, 1(1): 4–10.
  7. I. Iwantono, F. Angelina, P. Nurrahmawati, F. Y. Naumar,& A. A Umar. (2016). Optimalisasi Efisiensi Dye Sensitized Solar Cells Dengan Penambahan Doping Logam Aluminium Pada Material Aktif Nanorod ZnO Menggunakan Metode Hidrotermal. Jurnal Material dan Energi Indonesia, 6(1): 36–43.
  8. F. Dabir, H. Esfahani, F. Bakhtiargonbadi, & Z. Khodadadi. (2020). Study on microstructural and electro-optical properties of sol–gel derived pure and Al/Cu-doped ZnO thin films. Journal of Sol-Gel Science and Technology, 96(3):529–538.
  9. M. Lanjewar & J. V. Gohel. (2017). Enhanced performance of Ag-doped ZnO and pure ZnO thin films DSSCs prepared by sol-gel spin coating. Inorganic and Nano-Metal Chemistry, 47(7): 1090–1096.
  10. B. Mehmood, M. I. Khan, M. Iqbal, A. Mahmood, & W. Al‐Masry. (2020). Structural and optical properties of Ti and Cu co‐doped ZnO thin films for photovoltaic applications of dye sensitized solar cells. International Journal of Energy Research, 45(2):2445–2459.
  11. Y. Oktaviani & Astuti. (2014). Sintesis Lapisan Tipis Semikonduktor dengan Bahan Dasar Tembaga (Cu) Menggunakan Chemical Bath Deposition. Jurnal Fisika Unand, 3(1):53–58.
  12. M. W. Aminullah, H. Setiawan, A. Huda, H. Samaulah, S. Haryati, & M. D. Bustan. (2019). Pengaruh Komposisi Material Semikonduktor Dalam Menurunkan Energi Band Gap Terhadap Konversi Gelombang Mikro. Jurnal EECCIS, 13(2):65–70.
  13. Erniria, Motlan, & N. Siregar. (2021). Dye Sensitized Solar Cell (DSSC) Menggunakan Film Tipis ZnO:Cu dengan Variasi Kecepatan Putaran Berbahan Dye Buah Karamunting. Jurnal Einstein, 9(1):33–39.
  14. A. A. Fadila & D. Krisdiyanto. (2019). Sintesis dan Karakterisasi ZnO : Zr Melalui Metode Sol-Gel dengan Variasi Pelarut serta Uji Kinerjanya untuk Dye Sensitized Solar Cell Pendahuluan. Indonesia Journal of Material Chemistry, 2(2):61–66.
  15. Y. Yunita, N. Nurlina, & I. Syahbanu. (2020). Sintesis Nanopartikel Zink Oksida (ZnO) dengan Penambahan Ekstrak Klorofil sebagai Capping Agent. Positron, 10(2): 123-130.
  16. S. K. W. Ningsih. (2017). Sintesis dan Karakterisasi Nanopartikel ZnO Dopped Cu2+ Melalui Metode Sol Gel. EKSAKTA: Berkala Ilmiah Bidang MIPA, 18(02):39–51.
  17. P. Mahajan, A. Singh, & S. Arya. (2019). Improved performance of solution processed organic solar cells with an additive layer of sol-gel synthesized ZnO/CuO core/shell nanoparticles. Journal of Alloys and Compounds, 814: 152292.
  18. V. Ganesan, M. Hariram, S. Vivekanandhan, & S. Muthuramkumar. (2020). Periconium sp. (endophytic fungi) extract mediated sol-gel synthesis of ZnO nanoparticles for antimicrobial and antioxidant applications. Materials Science in Semiconductor Processing, 105:104739.
  19. R. Perveen, S. Shujaat, Z. Qureshi, S. Nawaz, M. I. Khan, & M. Iqbal. (2020). Green versus sol-gel synthesis of ZnO nanoparticles and antimicrobial activity evaluation against panel of pathogens. Journal of Materials Research and Technology, 9(4):7817–7827.
  20. A. Kumar. (2020). Sol gel synthesis of zinc oxide nanoparticles and their application as nano-composite electrode material for supercapacitor. Journal of Molecular Structure, 1220: 128654.
  21. T. Amakali, L. S. Daniel, V. Uahengo, N. Y. Dzade, & N. H. de Leeuw. (2020). Structural and Optical Properties of ZnO Thin Films Prepared by Molecular Precursor and Sol–Gel Methods. Crystals, 10(2):132.
  22. M. Heenemann. et al. (2020). The Mechanism of Interfacial CO2 Activation on Al Doped Cu/ZnO. ACS Catalysis, 10(10):5672–5680
  23. J. N. Hasnidawani, H. N. Azlina, H. Norita, N. N. Bonnia, S. Ratim, & E. S. Ali. (2016). Synthesis of ZnO Nanostructures Using Sol-Gel Method. Procedia Chemistry, 19: 211–216.
  24. C. Rojas-Michea, M. Morel, F. Gracia, G. Morell, and E. Mosquera. (2020). Influence of copper doping on structural, morphological, optical, and vibrational properties of ZnO nanoparticles synthesized by sol gel method. Surfaces and Interfaces, 21:100700.
  25. S. N. Aliyah & K. Maharani. (2021). Pengaruh Suhu Kalsinasi Komposit Zn Terhadap Karakteristik Komposit TiO2/ZnO Effect Of Zn Composite Calcination Temperature on the Characteristic Of TiO2/ZnO Composite. 10(1):79–84.
  26. Z. R. Khan, M. S. Khan, M. Zulfequar, & M. Shahid Khan. (2011). Optical and Structural Properties of ZnO Thin Films Fabricated by Sol-Gel Method. Materials Sciences and Applications, 2(5):340–345.
  27. U. N. Sherly Kasuma Warda Ningsih, & Umar Kalmar Nizar. (2017). Sintesis dan Karakterisasi Nanopartikel ZnO Doped Cu2+ Melalui Metoda Sol-Gel. Eksakta, 18(2):39–51.
  28. S. K. Warda Ningsih, Sintesis Anorganik. Padang: UNP Press, 2016.
  29. P. K. Labhane, V. R. Huse, L. B. Patle, A. L. Chaudhari, & G. H. Sonawane. (2015). Synthesis of Cu Doped ZnO Nanoparticles: Crystallographic, Optical, FTIR, Morphological and Photocatalytic Study. Journal of Materials Science and Chemical Engineering, 3(7):39–51.
  30. N. Siregar & Sabarina. (2021). Dye Sensitized Solar Cell Menggunakan Film Tipis ZnO:Cu Dengan Variasi Kecepatan Putaran Berbahan Dye Buah Karamunting. Jurnal Einstein, 9(2):55–61.
  31. J. S. C. Licurgo, G. R. de Almeida Neto, & H. R. Paes Junior. (2020). Structural, electrical and optical properties of copper-doped zinc oxide films deposited by spray pyrolysis. Cerâmica, 66(379):284–290.