Main Article Content

Abstract

The Kampar River is one of the rivers in the upper reaches that has caused pollution due to local communities such as excessive activity and gravel and sand mining. The purpose of this study was to determine the density of phytoplankton in the Kampar River in Koto Kampar Hulu Subdistrict, Kampar Regency. Purposive sampling was used to determine observation stations, which took into account habitat types and biological parameters observed such as species composition, abundance, and diversity index. The findings revealed that five classes of algae were discovered in Kampar Chlorophyceae, Cyanophyceae, Zygnematophyceae, Bacillariophyceae, and Xanthophyceae. The abundance of phytoplankton in the Kampar River's waters is classified as moderate fertility, ranging from 2,419.96 cells/liter to 3,629.96 cells/liter.

Keywords

estimation phytoplankton density Kampar river

Article Details

How to Cite
1.
Dinata M, Sembiring AK, Ramadansur R. Estimation of Phytoplankton Density in Waters Kampar River Kampar District. EKSAKTA [Internet]. 2024Sep.30 [cited 2024Oct.8];25(03):372-81. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/341

References

  1. Adamczuk, M. (2021). Demographic consequences of mitigating strategies in planktonic invertebrates facing global browning of freshwater ecosystem. Aquatic Sciences, 83(2), 31.
  2. Wohl, E. (2020). Rivers in the Landscape. John Wiley & Sons.
  3. Engel, F. (2020). The role of freshwater phytoplankton in the global carbon cycle (Doctoral dissertation, Acta Universitatis Upsaliensis).
  4. Malmqvist, B., & Rundle, S. (2002). Threats to the running water ecosystems of the world. Environmental conservation, 29(2), 134-153.
  5. FItriadi, R., Pratiwi, N. T. M., & Kurnia, R. (2021). Komunitas fitoplankton dan konsentrasi nutrien di Waduk Jatigede. Jurnal Ilmu Pertanian Indonesia, 26(1), 143-150.
  6. Reynolds, C. S. (2006). The ecology of phytoplankton. Cambridge University Press.
  7. Gómez-Ocampo, E., Gaxiola-Castro, G., Durazo, R., & Beier, E. (2018). Effects of the 2013-2016 warm anomalies on the California Current phytoplankton. Deep Sea Research Part II: Topical Studies in Oceanography, 151, 64-76.
  8. Smith, J., Connell, P., Evans, R. H., Gellene, A. G., Howard, M. D., Jones, B. H., ... & Caron, D. A. (2018). A decade and a half of Pseudo-nitzschia spp. and domoic acid along the coast of southern California. Harmful algae, 79, 87-104.
  9. Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., ... & Tamminen, T. (2018). Shifting diatom—dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Frontiers in Marine Science, 5, 327.
  10. Dalu, T., Mwedzi, T., & Wasserman, R. J. (2022). Phytoplankton dynamics. In Fundamentals of Tropical Freshwater Wetlands (pp. 189-219). Elsevier.
  11. Hendrajat, E. A., & Sahrijanna, A. (2019). Kondisi Plankton pada Tambak Udang Windu (Penaeus monodon Fabricius) dengan Substrat berbeda. BERITA BIOLOGI, 18(1), 47-57.
  12. Walter, R. K., Armenta, K. J., Shearer, B., Robbins, I., & Steinbeck, J. (2018). Coastal upwelling seasonality and variability of temperature and chlorophyll in a small coastal embayment. Continental Shelf Research, 154, 9-18.
  13. Abonyi, A., Kiss, K. T., Hidas, A., Borics, G., Várbíró, G., & Acs, E. (2020). Cell size decrease and altered size structure of phytoplankton constrain ecosystem functioning in the middle Danube River over multiple decades. Ecosystems, 23, 1254-1264.
  14. Zhu, W., Wan, L., & Zhao, L. (2010). Effect of nutrient level on phytoplankton community structure in different water bodies. Journal of Environmental Sciences, 22(1), 32-39.
  15. Adamczuk, M. (2021). Demographic consequences of mitigating strategies in planktonic invertebrates facing global browning of freshwater ecosystem. Aquatic Sciences, 83(2), 31.
  16. Brereton, A., Siddons, J., & Lewis, D. M. (2018). Large-eddy simulation of subsurface phytoplankton dynamics: an optimum condition for chlorophyll patchiness induced by Langmuir circulations. Marine Ecology Progress Series, 593, 15-27.
  17. Dwirastina, M., & Riani, E. (2019). Komposisi, Kelimpahan dan Keanekaragaman Fitoplankton di Pulau Salah Nama Sungai Musi Sumatera Selatan. Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 16(1), 74-80.
  18. Ma, C., Li, Z., Mwagona, P. C., Rabbany, A., & Bhadha, J. H. (2022). Spatial and seasonal dynamics of phytoplankton groups and its relationship with environmental variables in Lake Okeechobee, USA. Journal of Freshwater Ecology, 37(1), 173-187.
  19. Cencini, M., Boffetta, G., Borgnino, M., & De Lillo, F. (2019). Gyrotactic phytoplankton in laminar and turbulent flows: a dynamical systems approach. The European Physical Journal E, 42, 1-15.
  20. Clifton, W., Bearon, R. N., & Bees, M. A. (2018). Enhanced sedimentation of elongated plankton in simple flows. IMA Journal of Applied Mathematics, 83(4), 743-766.
  21. Dodds, W. K., Whiles, M. R., Dodds, W. K., & Whiles, M. R. (2020). Nutrient use and remineralization. Freshwater Ecology. Concepts and Environmental Applications of Limnology, 3rd ed. Academic Press, Cambridge, 503-535.
  22. Lu, X., Sui, F., Liu, Y., & Fan, Y. (2022). Comparison of three functional classification approaches to characterize phytoplankton response to environmental heterogeneity: A case study in NE China wetlands. Journal of Freshwater Ecology, 37(1), 103-116.
  23. Sen, B., Alp, M. T., Sonmez, F., Kocer, M. A. T., & Canpolat, O. (2013). Relationship of algae to water pollution and waste water treatment. Water treatment, 14, 335-354.
  24. Li, Y., Yu, Z., Ji, S., Meng, J., Kong, Q., Wang, R., & Liu, J. (2021). Diverse drivers of phytoplankton dynamics in different phyla across the annual cycle in a freshwater lake. Journal of Freshwater Ecology, 36(1), 13-29.
  25. Amorim, C. A., & do Nascimento Moura, A. (2021). Ecological impacts of freshwater algal blooms on water quality, plankton biodiversity, structure, and ecosystem functioning. Science of the Total Environment, 758, 143605.
  26. Trommer, G., Poxleitner, M., & Stibor, H. (2020). Responses of lake phytoplankton communities to changing inorganic nitrogen supply forms. Aquatic Sciences, 82, 1-13.
  27. Durante, G., Basset, A., Stanca, E., & Roselli, L. (2019). Allometric scaling and morphological variation in sinking rate of phytoplankton. Journal of phycology, 55(6), 1386-1393.
  28. Yang, X., Liu, Q., Luo, X., & Zheng, Z. (2017). Spatial regression and prediction of water quality in a watershed with complex pollution sources. Scientific Reports, 7(1), 8318.
  29. Naselli-Flores, L., Zohary, T., & Padisák, J. (2021). Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds. Hydrobiologia, 848(1), 7-30.
  30. Cook, K. V., Li, C., Cai, H., Krumholz, L. R., Hambright, K. D., Paerl, H. W., ... & Zhu, G. (2020). The global Microcystis interactome. Limnology and Oceanography, 65, S194-S207.
  31. Jin, L., Chen, H., Xue, Y., Soininen, J., & Yang, J. (2022). The scale-dependence of spatial distribution of reservoir plankton communities in subtropical and tropical China. Science of the Total Environment, 845, 157179.
  32. Effendi, H., Kawaroe, M., Lestari, D. F., & Permadi, T. (2016). Distribution of phytoplankton diversity and abundance in Mahakam Delta, East Kalimantan. Procedia Environmental Sciences, 33, 496-504.