Main Article Content

Abstract

The main source of electricity supply, namely PLN, greatly affects the supply of electricity and is not always continuous in its distribution. PLN power outages cause the distribution of human activities and productivity. The solution is to create a hybrid automatic transfer switch (ATS) system. The system works automatically as a hybrid power plant using a solar cell and PLN using ATS and remote monitoring using android. This type of research is classified as laboratory experimental engineering research. This study aims to determine the power savings of PLN that flows to the load after using the ATS system, work specifications, and system design specifications. In this study, a solar cell with a maximum capacity of 20 watts was used. The results of power savings after using the ATS system in sunny weather conditions for 10 hours of irradiation with an average solar intensity of 318,551 lux is 16,84%. The system performance specifications are small, portable, and easy to operate. The values of accuracy and precision in power saving are 96,13% and 95%.  

Keywords

SolSolar Panel, ATS, Hybrid, Android

Article Details

How to Cite
1.
Audia W, Yulkifli Y, Mairizwan M, Rinaldi A. Automatic Transfer Switch System Design on Solar Cell – Grid Hybrid Based on Android Application. EKSAKTA [Internet]. 2022Dec.30 [cited 2024Apr.26];23(04):266-83. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/332

References

  1. K. Gundogdu. (2020). Investigation of basic principles and technologies of solar cells. J. Chem. Inf. Model .vol. 20, 50–55.
  2. Lin, R., Xu, J., Wei, M., Wang, Y., Qin, Z., Liu, Z., ... & Tan, H. (2022). All-perovskite tandem solar cells with improved grain surface passivation. Nature, 603(7899), 73-78.
  3. Kim, M., Jeong, J., Lu, H., Lee, T. K., Eickemeyer, F. T., Liu, Y., ... & Kim, D. S. (2022). Conformal quantum dot–SnO2 layers as electron transporters for efficient perovskite solar cells. Science, 375(6578), 302-306.
  4. Zheng, Z., Wang, J., Bi, P., Ren, J., Wang, Y., Yang, Y., ... & Hou, J. (2022). Tandem organic solar cell with 20.2% efficiency. Joule, 6(1), 171-184.
  5. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini. (2019). The role of renewable energy in the global energy transformation. Energy Strategy. Rev., vol. 24, 38–50.
  6. Ma, R., Yan, C., Yu, J., Liu, T., Liu, H., Li, Y., ... & Yan, H. (2022). High-efficiency ternary organic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Letters, 7(8), 2547-2556.
  7. Chomać-Pierzecka, E., Sobczak, A., & Urbaczyk, E. (2022). RES market development and public awareness of the economic and environmental dimension of the energy transformation in Poland and Lithuania. Energies, 15(15), 5461.
  8. D. D. Cahyono, S. I. Haryudo, and B. Suprianto. (2020). Studi Literatur: Sistem Panel Surya Menggunakan Automatic Transfer Switch Dan Solar Tracking. J. Tek. Elektro, pp. 741–750.
  9. Praveenkumar, S., Gulakhmadov, A., Kumar, A., Safaraliev, M., & Chen, X. (2022). Comparative Analysis for a Solar Tracking Mechanism of Solar PV in Five Different Climatic Locations in South Indian States: A Techno-Economic Feasibility. Sustainability, 14(19), 11880.
  10. S. Shakya. (2021). A Self Monitoring and Analyzing System for Solar Power Station using IoT and Data Mining Algorithms. J. Soft Comput. Paradig., vol. 3, no. 2, pp. 96–109.
  11. Hariri, N. G., AlMutawa, M. A., Osman, I. S., AlMadani, I. K., Almahdi, A. M., & Ali, S. (2022). Experimental Investigation of Azimuth-and Sensor-Based Control Strategies for a PV Solar Tracking Application. Applied Sciences, 12(9), 4758.
  12. Tim Sekretaris Jenderal Dewan Energi Nasional. (2019). Indonesia Energy Out Look 2019. J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699.
  13. Stanek, B., Wcel, D., Bartela, ., & Rulik, S. (2022). Solar tracker error impact on linear absorbers efficiency in parabolic trough collector–Optical and thermodynamic study. Renewable Energy, 196, 598-609.
  14. Muhammad Ihsan Fadriantam. (2013). Analisis Perbandingan Kinerja Algoritme Perturb And Observe (P&O) Dan Incremental Conductance (IC) Pada Sistem Kendali Maximum Power Point Tracker (MPPT) Untuk Sistem Photovoltaic (PV) Paralel. J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699.
  15. Al-Amayreh, M. I., & Alahmer, A. (2022). On improving the efficiency of hybrid solar lighting and thermal system using dual-axis solar tracking system. Energy Reports, 8, 841-847.
  16. K. E. Khujamatov, D. T. Khasanov, and E. N. Reypnazarov. (2019). Modeling and Research of Automatic Sun Tracking System on the bases of IoT and Arduino UNO. Int. Conf. Inf. Sci. Commun. Technol. Appl. Trends Oppor. ICISCT 2019.
  17. Zangeneh, M., Aghajari, E., & Forouzanfar, M. (2022). Design and implementation of an intelligent multi-input multi-output Sugeno fuzzy logic controller for managing energy resources in a hybrid renewable energy power system based on Arduino boards. Soft Computing, 26(3), 1459-1473.
  18. S. Mahmoudinezhad, S. Ahmadi Atouei, P. A. Cotfas, D. T. Cotfas, L. A. Rosendahl, and A. Rezania. (2019). Experimental and numerical study on the transient behavior of multi-junction solar cell-thermoelectric generator hybrid system. Energy Convers. Manag., vol. 184, pp. 448–455.
  19. Giteau, M., Almosni, S., & Guillemoles, J. F. (2022). Hot-carrier multi-junction solar cells: a synergistic approach. Applied Physics Letters, 120(21), 213901.
  20. R. Rahman. (2013). Renewable Energy: An Ideal Solution of.Glob. J., vol. 13, no. 15, p. 6.
  21. Yao, H., & Hou, J. (2022). Recent Advances in Single‐Junction Organic Solar Cells. Angewandte Chemie, 134(37), e202209021.
  22. Sun, R., Wu, Y., Yang, X., Gao, Y., Chen, Z., Li, K., ... & Min, J. (2022). Single‐Junction Organic Solar Cells with 19.17% Efficiency Enabled by Introducing One Asymmetric Guest Acceptor. Advanced Materials, 2110147.
  23. C. Flin, H. Curalucci, A. Duvocelle, and J. M. Viton. (2020). Paraostéoarthropathies neurogènes et traumatisme crânien sévère. Ann. Readapt. Med. Phys., vol. 45, no. 9, pp. 517–520.
  24. McDonald, C., Sai, H., Svrcek, V., Kogo, A., Miyadera, T., Murakami, T. N., ... & Matsui, T. (2022). In Situ Grown Nanocrystalline Si Recombination Junction Layers for Efficient Perovskite–Si Monolithic Tandem Solar Cells: Toward a Simpler Multijunction Architecture. ACS Applied Materials & Interfaces, 14(29), 33505-33514.
  25. D. Yang et al. (2021). Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, vol. 79, p. 105394.
  26. Zhao, Z. H. (2022). Improved fuzzy logic control-based energy management strategy for hybrid power system of FC/PV/battery/SC on tourist ship. International Journal of Hydrogen Energy, 47(16), 9719-9734.
  27. Yuan, X., Heikari, L., Hirvonen, J., Liang, Y., Virtanen, M., Kosonen, R., & Pan, Y. (2022). System modelling and optimization of a low temperature local hybrid energy system based on solar energy for a residential district. Energy Conversion and Management, 267, 115918.
  28. T. Markvart and L. Castañer. (2005). Solar Cells.Sol. Cells, vol. 7, no. 2, pp. 157–163.
  29. Liang, H., Su, R., Huang, W., Cheng, Z., Wang, F., Huang, G., & Yang, D. (2022). A novel spectral beam splitting photovoltaic/thermal hybrid system based on semi-transparent solar cell with serrated groove structure for co-generation of electricity and high-grade thermal energy. Energy Conversion and Management, 252, 115049.
  30. Z. Li, J. Yang, and P. A. N. Dezfuli .(2021). Study on the Influence of Light Intensity on the Performance of Solar Cell. Int. J. Photoenergy, vol. 2021.
  31. Odoi-Yorke, F., Abaase, S., Zebilila, M., & Atepor, L. (2022). Feasibility analysis of solar PV/biogas hybrid energy system for rural electrification in Ghana. Cogent Engineering, 9(1), 2034376.
  32. E. Gervais, S. Shammugam, L. Friedrich, and T. Schlegl. (2021). Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050. Renew. Sustain. Energy Rev., vol. 137, no. June 2020, p. 110589.
  33. Güven, A. F., & Samy, M. M. (2022). Performance analysis of autonomous green energy system based on multi and hybrid metaheuristic optimization approaches. Energy Conversion and Management, 269, 116058.
  34. B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda. (2018). Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif. Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 10–14.
  35. Muna, Y. B., & Kuo, C. C. (2022). Feasibility and techno-economic analysis of electric vehicle charging of PV/Wind/Diesel/Battery hybrid energy system with different battery technology. Energies, 15(12), 4364.
  36. M. Tanemo, K. Matsudate, and S. Nomura. (2018). Series/Parallel Switching Circuits Using Power MOSFETs for Photovoltaic Modules. 2018 Int. Power Electron. Conf. IPEC-Niigata - ECCE Asia 2018, pp. 2022–2029.
  37. Song, Y., Mu, H., Li, N., Shi, X., Zhao, X., Chen, C., & Wang, H. (2022). Techno-economic analysis of a hybrid energy system for CCHP and hydrogen production based on solar energy. International Journal of Hydrogen Energy, 47(58), 24533-24547.
  38. I. Wahyudi, E. Kurniawan. (2021). Pembangkit Hibrida Panel Surya Dan Lintasan Catu Pln.eProceedings …, vol. 8, no. 1, pp. 25–33.
  39. Hoseinzadeh, S., & Garcia, D. A. (2022). Techno-economic assessment of hybrid energy flexibility systems for islands’ decarbonization: A case study in Italy. Sustainable Energy Technologies and Assessments, 51, 101929.
  40. Abdollahipour, A., & Sayyaadi, H. (2022). Optimal design of a hybrid power generation system based on integrating PEM fuel cell and PEM electrolyzer as a moderator for micro-renewable energy systems. Energy, 260, 124944.
  41. G. B. A. Kumar and Shivashankar. (2022). Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system. Int. J. Energy Environ. Eng., vol. 13, no. 1, pp. 77–103.
  42. Kumar, G. B. (2022). Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system. International Journal of Energy and Environmental Engineering, 13(1), 77-103.
  43. A. J. Angelina Evelyn Tjundawan. (2011). Sumber Energi Listrik Dengan Sistem Hybrid (Solar Panel Dan Jaringan Listrik Pln). Widya Tek., vol. 10, no. 1, pp. 42–53.
  44. Cao, Y., Wang, Q., Cheng, W., Nojavan, S., & Jermsittiparsert, K. (2020). Risk-constrained optimal operation of fuel cell/photovoltaic/battery/grid hybrid energy system using downside risk constraints method. International Journal of Hydrogen Energy, 45(27), 14108-14118.
  45. P. G. Chamdareno, E. Nuryanto, and E. Dermawan. (2019). Perencanaan Sistem Pembangkit Listrik Hybrid (Panel Surya dan Diesel Generator) pada Kapal KM. Kelud. Resist. elektRonika kEndali Telekomun. tenaga List. kOmputeR, vol. 2, no. 1, p. 59.
  46. Haddad, A., Ramadan, M., Khaled, M., Ramadan, H., & Becherif, M. (2020). Study of hybrid energy system coupling fuel cell, solar thermal system and photovoltaic cell. International Journal of Hydrogen Energy, 45(25), 13564-13574.
  47. S. Sadi and S. Mulyati. (2019) .Ats (Automatic Transfer Switch) Berbasis Programmablle Logic Controller Cpm1a Automatic Transfer Switch (Ats) Based on Programmablle Logic Controller Cpm1a.J. Tek., vol. 8, no. 1, pp. 84–89.
  48. Salameh, T., Ghenai, C., Merabet, A., & Alkasrawi, M. (2020). Techno-economical optimization of an integrated stand-alone hybrid solar PV tracking and diesel generator power system in Khorfakkan, United Arab Emirates. Energy, 190, 116475.
  49. Delgado-Torres, A. M., García-Rodríguez, L., & del Moral, M. J. (2020). Preliminary assessment of innovative seawater reverse osmosis (SWRO) desalination powered by a hybrid solar photovoltaic (PV)-Tidal range energy system. Desalination, 477, 114247.
  50. A. Arshad, M. Rizwan, and A. Maqsood. (2016). Design & Implementation of Cost Effective Automatic Transfer Switch.vol. 4, no. 5, pp. 107–116.
  51. Jumare, I. A., Bhandari, R., & Zerga, A. (2020). Assessment of a decentralized grid-connected photovoltaic (PV)/wind/biogas hybrid power system in northern Nigeria. Energy, Sustainability and Society, 10(1), 1-25.
  52. Cai, W., Li, X., Maleki, A., Pourfayaz, F., Rosen, M. A., Nazari, M. A., & Bui, D. T. (2020). Optimal sizing and location based on economic parameters for an off-grid application of a hybrid system with photovoltaic, battery and diesel technology. Energy, 201, 117480.
  53. M. and others Syukri. (2010). 129219-ID-perencanaan-pembangkit-listrik-tenaga-su. J. Rekayasa Elektr., vol. 9, no. 2, pp. 77–80.
  54. Dawood, F., Shafiullah, G. M., & Anda, M. (2020). Stand-alone microgrid with 100% renewable energy: A case study with hybrid solar PV-battery-hydrogen. Sustainability, 12(5), 2047.
  55. Q. Shi, Z. Sun, Z. Zhang, and C. Lee. (2021). Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, vol. 2021, pp. 1–30.
  56. Soudan, B., & Darya, A. (2020). Autonomous smart switching control for off-grid hybrid PV/battery/diesel power system. Energy, 211, 118567.
  57. C. Qiu, F. Wu, C. Lee, and M. R. Yuce. (2020). Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, vol. 70, no. November 2019, p. 104456.
  58. Li, J., Liu, P., & Li, Z. (2020). Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China. Energy, 208, 118387.
  59. D. Saravanan and T. Lingeshwaran. (2019). Monitoring of solar panel based on IOT. 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, pp. 1–5.
  60. Singh, S., Chauhan, P., Aftab, M. A., Ali, I., Hussain, S. S., & Ustun, T. S. (2020). Cost optimization of a stand-alone hybrid energy system with fuel cell and PV. Energies, 13(5), 1295.
  61. D. D. Prasanna Rani, D. Suresh, P. Rao Kapula, C. H. Mohammad Akram, N. Hemalatha, and P. Kumar Soni. (2021). IoT based smart solar energy monitoring systems.Mater.
  62. Rehman, S., Natrajan, N., Mohandes, M., Alhems, L. M., Himri, Y., & Allouhi, A. (2020). Feasibility study of hybrid power systems for remote dwellings in Tamil Nadu, India. IEEE Access, 8, 143881-143890.
  63. D. A. Aziz. (2018). Webserver Based Smart Monitoring System Using ESP8266 Node MCU Module.Int. J. Sci. Eng. Res., vol. 9, no. 6, pp. 801–808.
  64. Toopshekan, A., Yousefi, H., & Astaraei, F. R. (2020). Technical, economic, and performance analysis of a hybrid energy system using a novel dispatch strategy. Energy, 213, 118850.
  65. Raghuwanshi, S. S., & Arya, R. (2020). Reliability evaluation of stand-alone hybrid photovoltaic energy system for rural healthcare centre. Sustainable Energy Technologies and Assessments, 37, 100624.
  66. T. Hidayat. (2019). Rancang Bangun Smart Meter Berbasis IoT Untuk Aplikasi Pembangkit Listrik Tenaga Surya Microgrid. J. Tek. Elektro ITP, vol. 8, no. 2, pp. 87–92.
  67. Pan, Z., Quynh, N. V., Ali, Z. M., Dadfar, S., & Kashiwagi, T. (2020). Enhancement of maximum power point tracking technique based on PV-Battery system using hybrid BAT algorithm and fuzzy controller. Journal of Cleaner Production, 274, 123719.
  68. A. R. Al-Ali, A. Al Nabulsi, S. Mukhopadhyay, M. S. Awal, S. Fernandes, and K. Ailabouni. (2019). IoT-solar energy powered smart farm irrigation system. J. Electron. Sci. Technol., vol. 17, no. 4, pp. 332–347.
  69. Miao, C., Teng, K., Wang, Y., & Jiang, L. (2020). Technoeconomic analysis on a hybrid power system for the UK household using renewable energy: a case study. Energies, 13(12), 3231.
  70. Ferahtia, S., Djerioui, A., Zeghlache, S., & Houari, A. (2020). A hybrid power system based on fuel cell, photovoltaic source and supercapacitor. SN Applied Sciences, 2(5), 1-11.
  71. P. Srivastava, M. Bajaj, and A. S. Rana. (2018). IOT based controlling of hybrid energy system using ESP8266.IEEMA Eng. Infin. Conf. eTechNxT 2018, pp. 1–5.
  72. Yang, D., Ni, Y., Su, H., Shi, Y., Liu, Q., Chen, X., & He, D. (2021). Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, 79, 105394.
  73. L. Mohammad, E. Prasetyono, and F. D. Murdianto. (2019). Performance Evaluation of ACO-MPPT and Constant Voltage Method for Street Lighting Charging System.Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 411–416.
  74. I. Maryanto and M. I. Sikki. (2018). Sistem Automatic Transfer Switch (ATS) Automatic Main Failure (AMF) Menggunakan SMS. JREC (Journal Electr. Electron)., vol. 6, no. 1, pp. 19–32.
  75. Makhdoomi, S., & Askarzadeh, A. (2020). Optimizing operation of a photovoltaic/diesel generator hybrid energy system with pumped hydro storage by a modified crow search algorithm. Journal of Energy Storage, 27, 101040.
  76. T. Ratnasari and A. Senen. (2017). Perancangan prototipe alat ukur arus listrik Ac dan Dc berbasis mikrokontroler arduino dengan sensor arus Acs-712 30 ampere. J. Sutet, vol. 7, no. 2, pp. 28–33.
  77. Ebhota, W. S., & Jen, T. C. (2020). Fossil fuels environmental challenges and the role of solar photovoltaic technology advances in fast tracking hybrid renewable energy system. International Journal of Precision Engineering and Manufacturing-Green Technology, 7(1), 97-117.
  78. A. A. Arefin, A. S. Nazmul Huda, Z. Syed, A. Kalam, and H. Terasaki. (2020) .ACS712 Based Intelligent Solid-State Relay for Overcurrent Protection of PV-Diesel Hybrid Mini Grid. IEEE Student Conf. Res. Dev. SCOReD 2020, pp. 59–62.
  79. Ali, A., Almutairi, K., Padmanaban, S., Tirth, V., Algarni, S., Irshad, K., ... & Malik, M. Z. (2020). Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition–a retrospection. IEEE Access, 8, 127368-127392.
  80. A. S. Gunarjati. (2019). Teknologi Iot Pada Monitoring Dan Otomasi Kolam Pembesaran Ikan Lele Berbasis Mikrokontroler.Univ. Islam Indones., vol. Vol 3, no, pp. 3–7.
  81. Akinyele, D., Olatomiwa, L., Ighravwe, D. E., Babatunde, M. O., Monyei, C., & Aikhuele, D. (2020). Optimal planning and electricity sharing strategy of hybrid energy system for remote communities in Nigeria. Scientific African, 10, e00589.
  82. Mohammed, A. Q., Al-Anbarri, K. A., & Hannun, R. M. (2020). Optimal combination and sizing of a stand–alone hybrid energy system using a nomadic people optimizer. IEEE Access, 8, 200518-200540.
  83. J. Lambert, R. Monahan, and K. Casey. (2021). Power consumption profiling of a lightweight development board: Sensing with the INA219 and Teensy 4.0 microcontroller. Electron., vol. 10, no. 7.
  84. Nyeche, E. N., & Diemuodeke, E. O. (2020). Modelling and optimisation of a hybrid PV-wind turbine-pumped hydro storage energy system for mini-grid application in coastline communities. Journal of cleaner production, 250, 119578.
  85. N. Sadikin, M. Sari, and B. Sanjaya. (2019). Smarthome Using Android Smartphone, Arduino uno Microcontroller and Relay Module. J. Phys. Conf. Ser., vol. 1361, no. 1.
  86. Murty, V. V. S. N., & Kumar, A. (2020). Multi-objective energy management in microgrids with hybrid energy sources and battery energy storage systems. Protection and Control of Modern Power Systems, 5(1), 1-20.
  87. Phonphan, N., & Khamphakdi, P. (2020, October). Home Energy Management System Based on The Photovoltaic–Battery Hybrid Power System. In 2020 International Conference on Power, Energy and Innovations (ICPEI), (pp. 213-216).
  88. J. Mesquita, D. Guimaraes, C. Pereira, F. Santos, and L. Almeida. (2018). Assessing the ESP8266 WiFi module for the Internet of Things.IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, vol. 2018-September, pp. 784–791.
  89. Alshammari, N., & Asumadu, J. (2020). Optimum unit sizing of hybrid renewable energy system utilizing harmony search, Jaya and particle swarm optimization algorithms. Sustainable Cities and Society, 60, 102255.
  90. Subramaniam, U., Vavilapalli, S., Padmanaban, S., Blaabjerg, F., Holm-Nielsen, J. B., & Almakhles, D. (2020). A hybrid PV-battery system for ON-grid and OFF-grid applications—Controller-in-loop simulation validation. Energies, 13(3), 755.
  91. A. Roihan, A. Permana, and D. Mila. (2016). Monitoring Kebocoran Gas Menggunakan Mikrokontroler Arduino Uno Dan Esp8266 Berbasis Internet Of Things.Icit J., vol. 2, no. 2, pp. 170–183.
  92. Bukar, A. L., Tan, C. W., Lau, K. Y., & Dahiru, A. T. (2020). Optimal planning of hybrid photovoltaic/battery/diesel generator in ship power system. International Journal of Power Electronics and Drive Systems, 11(3), 1527.
  93. A. O. M. Maka and T. S. O’Donovan. (2022). Effect of thermal load on performance parameters of solar concentrating photovoltaic: High-efficiency solar cells. Energy Built Environ., vol. 3, no. 2, pp. 201–209.
  94. Wu, D., Nariman, G. S., Mohammed, S. Q., Shao, Z., Rezvani, A., & Mohajeryami, S. (2020). Modeling and simulation of novel dynamic control strategy for PV–wind hybrid power system using FGS− PID and RBFNSM methods. Soft Computing, 24(11), 8403-8425.
  95. H. Jhon. (2022). Implementasi grid tie inverter pada pembangkit listrik tenaga surya on grid untuk golongan pelanggan rumah tangga masyarakat perkotaan. J. Eltek, vol. 19, no. 1, p. 108.
  96. Kumar, G. B., Kaliannan, P., Padmanaban, S., Holm-Nielsen, J. B., & Blaabjerg, F. (2020). Effective management system for solar PV using real-time data with hybrid energy storage system. Applied Sciences, 10(3), 1108.
  97. Hemeida, A. M., El-Ahmar, M. H., El-Sayed, A. M., Hasanien, H. M., Alkhalaf, S., Esmail, M. F. C., & Senjyu, T. (2020). Optimum design of hybrid wind/PV energy system for remote area. Ain Shams Engineering Journal, 11(1), 11-23.
  98. J. K. Tharamuttam and A. K. Ng. (2017). Design and Development of an Automatic Solar Tracker. Energy Procedia, vol. 143, pp. 629–634..
  99. Wang, R. (2020). Multi-objective configuration optimization method for a diesel-based hybrid energy system. Energy Reports, 6, 2146-2152.
  100. R. Majid, A. Eliza . Herdiansyah. (2018). Alat Automatic Transfer Switch (Ats) Sebagai Sistem Kelistrikan Hybrid Sel Surya Pada Rumah Tangga. Surya Energi, vol. 2, no. 2, pp. 172–178.
  101. Rad, M. A. V., Ghasempour, R., Rahdan, P., Mousavi, S., & Arastounia, M. (2020). Techno-economic analysis of a hybrid power system based on the cost-effective hydrogen production method for rural electrification, a case study in Iran. Energy, 190, 116421.
  102. Y. Prasetyo, B. Triyono, H. N. K. Ningrum, R. J. K. Haryo, N. A. H., and W. Muchsin. (2020). Penerapan Automatic Transfer Switch Pada Sistem Irigasi Di Desa Rejosari Kabupaten Madiun.JATI EMAS. Jurnal Apl. Tek. dan Pengabdi. Masyarakat, vol. 4, no. 2, p. 99.
  103. Nsafon, B. E. K., Owolabi, A. B., Butu, H. M., Roh, J. W., Suh, D., & Huh, J. S. (2020). Optimization and sustainability analysis of PV/wind/diesel hybrid energy system for decentralized energy generation. Energy Strategy Reviews, 32, 100570.