Main Article Content


The main source of electricity supply, namely PLN, greatly affects the supply of electricity and not always continuous in its distribution. PLN power outages cause disruption of human activities. Solution is create hybrid system Automatic Transfer Switch. System works automatically as solar panel hybrid power plant PLN using ATS and Android remote monitoring. This type research is classified laboratory experimental engineering research. In experiment, power flow measurement from PLN to load was carried out and data reading was compared with reading of standard measuring instrument. Data obtained are solar panel harvesting power, load power and power flowing from PLN load. This study aims to determine power savings of PLN that flows to load after using ATS system, work specifications and system design specifications. Tool testing will be carried out on February 11, 2022 at 07.00 – 17.00 WIB. In this study, solar panel with maximum capacity of 20 watts was used. Results of power savings after using ATS system in sunny weather conditions for 10 hours of irradiation with an average solar intensity of 318.55lux is 16.84%. System performance specifications are small, portable and easy to operate. The values ​​of accuracy and precision in power saving are 96.13% and 95%.


SolSolar Panel, ATS, Hybrid, Android

Article Details

How to Cite
Audia W, Yulkifli Y, Mairizwan M. Automatic Transfer Switch System Design on Solar Cell – Grid Hybrid Based on Android Application. EKSAKTA [Internet]. 2022Nov.3 [cited 2022Nov.29];23(04):262-74. Available from:


  1. K. Gundogdu. (2020). Investigation of basic principles and technologies of solar cells. J. Chem. Inf. Model .vol. 20, 50–55.
  2. D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, and R. Gorini. (2019). The role of renewable energy in the global energy transformation. Energy Strategy. Rev., vol. 24, 38–50.
  3. D. D. Cahyono, S. I. Haryudo, and B. Suprianto. (2020). Studi Literatur: Sistem Panel Surya Menggunakan Automatic Transfer Switch Dan Solar Tracking. J. Tek. Elektro, pp. 741–750.
  4. S. Shakya. (2021). A Self Monitoring and Analyzing System for Solar Power Station using IoT and Data Mining Algorithms. J. Soft Comput. Paradig., vol. 3, no. 2, pp. 96–109.
  5. Tim Sekretaris Jenderal Dewan Energi Nasional. (2019). Indonesia Energy Out Look 2019.J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699.
  6. Muhammad Ihsan Fadriantam. (2013). Analisis Perbandingan Kinerja Algoritme Perturb And Observe (P&O) Dan Incremental Conductance (IC) Pada Sistem Kendali Maximum Power Point Tracker (MPPT) Untuk Sistem Photovoltaic (PV) Paralel. J. Chem. Inf. Model., vol. 53, no. 9, pp. 1689–1699.
  7. K. E. Khujamatov, D. T. Khasanov, and E. N. Reypnazarov. (2019). Modeling and Research of Automatic Sun Tracking System on the bases of IoT and Arduino UNO. Int. Conf. Inf. Sci. Commun. Technol. Appl. Trends Oppor. ICISCT 2019.
  8. S. Mahmoudinezhad, S. Ahmadi Atouei, P. A. Cotfas, D. T. Cotfas, L. A. Rosendahl, and A. Rezania. (2019). Experimental and numerical study on the transient behavior of multi-junction solar cell-thermoelectric generator hybrid system.Energy Convers. Manag., vol. 184, pp. 448–455.
  9. R. Rahman. (2013). Renewable Energy : An Ideal Solution of.Glob. J., vol. 13, no. 15, p. 6.
  10. C. Flin, H. Curalucci, A. Duvocelle, and J. M. Viton. (2020). Paraostéoarthropathies neurogènes et traumatisme crânien sévère. Ann. Readapt. Med. Phys., vol. 45, no. 9, pp. 517–520.
  11. D. Yang et al. (2021). Hybrid energy system based on solar cell and self-healing/self-cleaning triboelectric nanogenerator. Nano Energy, vol. 79, p. 105394.
  12. T. Markvart and L. Castañer. (2005). Solar Cells.Sol. Cells, vol. 7, no. 2, pp. 157–163.
  13. Z. Li, J. Yang, and P. A. N. Dezfuli .(2021). Study on the Influence of Light Intensity on the Performance of Solar Cell. Int. J. Photoenergy, vol. 2021.
  14. E. Gervais, S. Shammugam, L. Friedrich, and T. Schlegl. (2021). Raw material needs for the large-scale deployment of photovoltaics – Effects of innovation-driven roadmaps on material constraints until 2050. Renew. Sustain. Energy Rev., vol. 137, no. June 2020, p. 110589.
  15. B. H. Purwoto, J. Jatmiko, M. A. Fadilah, and I. F. Huda. (2018). Efisiensi Penggunaan Panel Surya sebagai Sumber Energi Alternatif. Emit. J. Tek. Elektro, vol. 18, no. 1, pp. 10–14.
  16. M. Tanemo, K. Matsudate, and S. Nomura. (2018). Series/Parallel Switching Circuits Using Power MOSFETs for Photovoltaic Modules. 2018 Int. Power Electron. Conf. IPEC-Niigata - ECCE Asia 2018, pp. 2022–2029.
  17. I. Wahyudi, E. Kurniawan. (2021). Pembangkit Hibrida Panel Surya Dan Lintasan Catu Pln.eProceedings …, vol. 8, no. 1, pp. 25–33.
  18. G. B. A. Kumar and Shivashankar. (2022). Optimal power point tracking of solar and wind energy in a hybrid wind solar energy system. Int. J. Energy Environ. Eng., vol. 13, no. 1, pp. 77–103.
  19. A. J. Angelina Evelyn Tjundawan. (2011). Sumber Energi Listrik Dengan Sistem Hybrid (Solar Panel Dan Jaringan Listrik Pln). Widya Tek., vol. 10, no. 1, pp. 42–53.
  20. P. G. Chamdareno, E. Nuryanto, and E. Dermawan. (2019). Perencanaan Sistem Pembangkit Listrik Hybrid (Panel Surya dan Diesel Generator) pada Kapal KM. Kelud. Resist. (elektRonika kEndali Telekomun. tenaga List. kOmputeR), vol. 2, no. 1, p. 59.
  21. S. Sadi and S. Mulyati. (2019) .Ats (Automatic Transfer Switch) Berbasis Programmablle Logic Controller Cpm1a Automatic Transfer Switch (Ats) Based on Programmablle Logic Controller Cpm1a.J. Tek., vol. 8, no. 1, pp. 84–89.
  22. A. Arshad, M. Rizwan, and A. Maqsood. (2016). Design & Implementation of Cost Effective Automatic Transfer Switch.vol. 4, no. 5, pp. 107–116.
  23. M. and others Syukri. (2010). 129219-ID-perencanaan-pembangkit-listrik-tenaga-su. J. Rekayasa Elektr., vol. 9, no. 2, pp. 77–80.
  24. Q. Shi, Z. Sun, Z. Zhang, and C. Lee. (2021). Triboelectric Nanogenerators and Hybridized Systems for Enabling Next-Generation IoT Applications. Research, vol. 2021, pp. 1–30.
  25. C. Qiu, F. Wu, C. Lee, and M. R. Yuce. (2020). Self-powered control interface based on Gray code with hybrid triboelectric and photovoltaics energy harvesting for IoT smart home and access control applications. Nano Energy, vol. 70, no. November 2019, p. 104456.
  26. D. Saravanan and T. Lingeshwaran. (2019). Monitoring of solar panel based on IOT. 2019 IEEE Int. Conf. Syst. Comput. Autom. Networking, ICSCAN 2019, pp. 1–5.
  27. D. D. Prasanna Rani, D. Suresh, P. Rao Kapula, C. H. Mohammad Akram, N. Hemalatha, and P. Kumar Soni. (2021). IoT based smart solar energy monitoring systems.Mater. Today Proc.
  28. D. A. Aziz. (2018). Webserver Based Smart Monitoring System Using ESP8266 Node MCU Module.Int. J. Sci. Eng. Res., vol. 9, no. 6, pp. 801–808.
  29. T. Hidayat. (2019). Rancang Bangun Smart Meter Berbasis IoT Untuk Aplikasi Pembangkit Listrik Tenaga Surya Microgrid. J. Tek. Elektro ITP, vol. 8, no. 2, pp. 87–92.
  30. A. R. Al-Ali, A. Al Nabulsi, S. Mukhopadhyay, M. S. Awal, S. Fernandes, and K. Ailabouni. (2019). IoT-solar energy powered smart farm irrigation system.J. Electron. Sci. Technol., vol. 17, no. 4, pp. 332–347.
  31. P. Srivastava, M. Bajaj, and A. S. Rana. (2018). IOT based controlling of hybrid energy system using ESP8266.IEEMA Eng. Infin. Conf. eTechNxT 2018, pp. 1–5.
  32. L. Mohammad, E. Prasetyono, and F. D. Murdianto. (2019). Performance Evaluation of ACO-MPPT and Constant Voltage Method for Street Lighting Charging System.Proc. - 2019 Int. Semin. Appl. Technol. Inf. Commun. Ind. 4.0 Retrosp. Prospect. Challenges, iSemantic 2019, pp. 411–416.
  33. I. Maryanto and M. I. Sikki. (2018). Sistem Automatic Transfer Switch (ATS) Automatic Main Failure (AMF) Menggunakan SMS. JREC (Journal Electr. Electron., vol. 6, no. 1, pp. 19–32.
  34. T. Ratnasari and A. Senen. (2017). Perancangan prototipe alat ukur arus listrik Ac dan Dc berbasis mikrokontroler arduino dengan sensor arus Acs-712 30 ampere. J. Sutet, vol. 7, no. 2, pp. 28–33.
  35. A. A. Arefin, A. S. Nazmul Huda, Z. Syed, A. Kalam, and H. Terasaki. (2020) .ACS712 Based Intelligent Solid-State Relay for Overcurrent Protection of PV-Diesel Hybrid Mini Grid.IEEE Student Conf. Res. Dev. SCOReD 2020, pp. 59–62.
  36. A. S. Gunarjati. (2019). Teknologi Iot Pada Monitoring Dan Otomasi Kolam Pembesaran Ikan Lele Berbasis Mikrokontroler.Univ. Islam Indones., vol. Vol 3, no, pp. 3–7.
  37. J. Lambert, R. Monahan, and K. Casey. (2021). Power consumption profiling of a lightweight development board: Sensing with the INA219 and Teensy 4.0 microcontroller. Electron., vol. 10, no. 7.
  38. N. Sadikin, M. Sari, and B. Sanjaya. (2019). Smarthome Using Android Smartphone, Arduino uno Microcontroller and Relay Module. J. Phys. Conf. Ser., vol. 1361, no. 1.
  39. J. Mesquita, D. Guimaraes, C. Pereira, F. Santos, and L. Almeida. (2018). Assessing the ESP8266 WiFi module for the Internet of Things.IEEE Int. Conf. Emerg. Technol. Fact. Autom. ETFA, vol. 2018-September, pp. 784–791.
  40. A. Roihan, A. Permana, and D. Mila. (2016). Monitoring Kebocoran Gas Menggunakan Mikrokontroler Arduino Uno Dan Esp8266 Berbasis Internet Of Things.Icit J., vol. 2, no. 2, pp. 170–183.
  41. A. O. M. Maka and T. S. O’Donovan. (2022). Effect of thermal load on performance parameters of solar concentrating photovoltaic: High-efficiency solar cells. Energy Built Environ., vol. 3, no. 2, pp. 201–209.
  42. H. Jhon. (2022). Implementasi grid tie inverter pada pembangkit listrik tenaga surya on grid untuk golongan pelanggan rumah tangga masyarakat perkotaan.J. Eltek, vol. 19, no. 1, p. 108.
  43. J. K. Tharamuttam and A. K. Ng. (2017). Design and Development of an Automatic Solar Tracker. Energy Procedia, vol. 143, pp. 629–634..
  44. R. Majid, A. Eliza . Herdiansyah. (2018). Alat Automatic Transfer Switch (Ats) Sebagai Sistem Kelistrikan Hybrid Sel Surya Pada Rumah Tangga. Surya Energi, vol. 2, no. 2, pp. 172–178.
  45. Y. Prasetyo, B. Triyono, H. N. K. Ningrum, R. J. K. Haryo, N. A. H., and W. Muchsin. (2020). Penerapan Automatic Transfer Switch Pada Sistem Irigasi Di Desa Rejosari Kabupaten Madiun.JATI EMAS. Jurnal Apl. Tek. dan Pengabdi. Masyarakat, vol. 4, no. 2, p. 99.