Main Article Content
Abstract
This study aims to analyze the variation in mangrove biomass across three locations in Maros Regency, South Sulawesi, namely Borongkalukua, Bonto Bahari, and Ampekale. Data collection was conducted using purposive sampling design, 27 observation plots (10×10 m; n=9 per location) were established to estimate biomass through Diameter at Breast Height (DBH) and species-specific allometric equations. Five mangrove species were identified, namely Rhizophora mucronata, Rhizophora apiculata, Avicennia alba, Avicennia marina, and Sonneratia alba. The two-way ANOVA results showed that species (p = 0.0003), location (p = 0.0266), and their interaction (p = 0.0065) had significant effects on biomass. The Kruskal–Wallis test also confirmed differences in median biomass among locations (p = 0.0104). Borongkalukua exhibited the highest biomass (302.57 Mg/ha) dominated by R. mucronata and R. apiculata, followed by Ampekale (223.20 Mg/ha) dominated by R. apiculata and S. alba, while the lowest biomass was recorded in Bonto Bahari (129.44 Mg/ha), dominated by A. marina. These variations in biomass reflect differences in species’ adaptive capacity to local environmental conditions. Overall, the findings emphasize that the interaction between species and location is a key determinant of mangrove biomass productivity.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Bimrah, K., Dasgupta, R., Hashimoto, S., Saizen, I., & Dhyani, S. (2022). Ecosystem services of mangroves: A systematic review and synthesis of contemporary scientific literature. Sustainability, 14(19), 12051.
- [2] Lee, H., Kim, H., Park, E., & Lee, B. (2025). Beyond carbon: a systematic review of multiple ecosystem services of mangroves. Journal of Coastal Conservation, 29(6), 58.
- [3] Hülsen, S., Dee, L. E., Kropf, C. M., Meiler, S., & Bresch, D. N. (2025). Mangroves and their services are at risk from tropical cyclones and sea level rise under climate change. Communications Earth & Environment, 6(1), 262.
- [4] Xu, C., Xue, Z., Jiang, M., Lyu, X., Zou, Y., Gao, Y., ... & Li, R. (2024). Simulating potential impacts of climate change on the habitats and carbon benefits of mangroves in China. Global Ecology and Conservation, 54, e03048.
- [5] Stamoulis, K. A., Pittman, S. J., Delevaux, J. M., Antonopoulou, M., Carpenter, S., Zaaboul, R., ... & Mateos-Molina, D. (2025). Conserving key coastal areas for mangrove expansion and eco-tourism secures ecosystem services under sea-level rise. npj Ocean Sustainability.
- [6] Meng, Y., Bai, J., Gou, R., Cui, X., Feng, J., Dai, Z., ... & Lin, G. (2021). Relationships between above-and below-ground carbon stocks in mangrove forests facilitate better estimation of total mangrove blue carbon. Carbon balance and management, 16(1), 8.
- [7] Dawi, M. R. S., Sulistiono, M. M. K., & Kamal, M. M. (2025). Blue Carbon Potential of Mangrove Ecosystems in Jakarta Bay for Climate Change Mitigation. ILMU KELAUTAN: Indonesian Journal of Marine Sciences, 30(3), 475-484.
- [8] Gouvêa, L. P., Serrão, E. A., Cavanaugh, K., Gurgel, C. F., Horta, P. A., & Assis, J. (2022). Global impacts of projected climate changes on the extent and aboveground biomass of mangrove forests. Diversity and Distributions, 28(11), 2349-2360.
- [9] Krišāns, O., Matisons, R., Jansone, L., Īstenais, N., Kāpostiņš, R., Šēnhofa, S., & Jansons, Ā. (2023). In the Northeasternmost Stands in Europe, Beech Shows Similar Wind Resistance to Birch. Forests, 14(2), 313.
- [10] Segaran, T. C., Azra, M. N., Lananan, F., Burlakovs, J., Vincevica-Gaile, Z., Rudovica, V., ... & Satyanarayana, B. (2023). Mapping the link between climate change and mangrove forest: A global overview of the literature. Forests, 14(2), 421.
- [11] Ceanturi, A., Tuahatu, J. W., Lokollo, F. F., Supusepa, J., Hulopi, M., Permatahati, Y. I., ... & Wardiatno, Y. (2024). Mangrove ecosystems in Southeast Asia region: Mangrove extent, blue carbon potential and CO2 emissions in 1996–2020. Science of the Total Environment, 915, 170052.
- [12] Moya, R., Tenorio, C., Torres-Gómez, D., & Cifuentes-Jara, M. (2024). Variation in Annual Ring and Wood Anatomy of Six Tree Mangrove Species in the Nicoya Gulf of Costa Rica. Water, 16(22), 3207.
- [13] Bai, J., Meng, Y., Gou, R., Lyu, J., Dai, Z., Diao, X., ... & Lin, G. (2021). Mangrove diversity enhances plant biomass production and carbon storage in Hainan island, China. Functional Ecology, 35(3), 774-786.
- [14] Arfan, A., Maru, R., Side, S., & Saputro, A. (2021). Strategi Pengelolaan Kawasan Hutan Mangrove Sebagai Kawasan Hutan Produksi Di Kabupaten Maros Sulawesi Selatan, Indonesia. Enviromental Science, 4(2), 183-193.
- [15] Khan, W. R., Giani, M., Bevilacqua, S., Anees, S. A., Mehmood, K., Nazre, M., ... & Dube, T. (2025). Derivation of allometric equations and carbon content estimation in mangrove forests of Malaysia. Environmental and Sustainability Indicators, 26, 100618.
- [16] Wang, K., Jiang, M., Li, Y., Kong, S., Gao, Y., Huang, Y., ... & Wan, S. (2024). Spatial Differentiation of Mangrove Aboveground Biomass and Identification of Its Main Environmental Drivers in Qinglan Harbor Mangrove Nature Reserve. Sustainability, 16(19), 8408.
- [17] Ferreira, A. C., Ashton, E. C., Ward, R. D., Hendy, I., & Lacerda, L. D. (2024). Mangrove biodiversity and conservation: Setting key functional groups and risks of climate-induced functional disruption. Diversity, 16(7), 423.
- [18] Saru, A., Fitrah, M. N., & Faizal, A. (2017). Analisis Kesesuaian Lahan Rehabilitasi Mangrove di Kecamatan Bontoa Kabupaten Maros Provinsi Sulawesi Selatan. Torani Journal of Fisheries and Marine Science, 1-13.
- [19] Komiyama, A., Poungparn, S., & Kato, S. (2005). Common allometric equations for estimating the tree weight of mangroves. Journal of tropical ecology, 21(4), 471-477.
- [20] Komiyama, A., Ong, J. E., & Poungparn, S. (2008). Allometry, biomass, and productivity of mangrove forests: A review. Aquatic botany, 89(2), 128-137.
- [21] Malik, A., Rahim, A., Jalil, A. R., Amir, M. F., Arif, D. S., Rizal, M., ... & Jihad, N. (2023). Mangrove blue carbon stocks estimation in South Sulawesi Indonesia. Continental Shelf Research, 269, 105139.
- [22] Zhang, Z., Shen, X., Yan, C., Li, R., & Li, B. (2025). Unveiling seaward expansion pattern in mangrove forests using UAV remote sensing and deep learning. Ecological Indicators, 178, 114054.
- [23] Rao, M. N., Ganguly, D., Prasad, M. H. K., Singh, G., Purvaja, R., Biswal, M., & Ramesh, R. (2021). Interspecific variations in mangrove stem biomass: A potential storehouse of sequestered carbon. Regional studies in marine science, 48, 102044.
- [24] Wang, W., Xin, K., Chen, Y., Chen, Y., Jiang, Z., Sheng, N., ... & Xiong, Y. (2024). Spatio-temporal variation of water salinity in mangroves revealed by continuous monitoring and its relationship to floristic diversity. Plant Diversity, 46(1), 134-143.
- [25] Yoshikai, M., Nakamura, T., Suwa, R., Sharma, S., Rollon, R., Yasuoka, J., ... & Nadaoka, K. (2022). Predicting mangrove forest dynamics across a soil salinity gradient using an individual-based vegetation model linked with plant hydraulics. Biogeosciences, 19(6), 1813-1832.
- [26] Lubińska-Mielińska, S., Kącki, Z., Kamiński, D., Petillon, J., Evers, C., & Piernik, A. (2023). Vegetation of temperate inland salt-marshes reflects local environmental conditions. Science of The Total Environment, 856, 159015.
- [27] Yu, Z., Wang, M., Sun, Z., Wang, W., & Chen, Q. (2023). Changes in the leaf functional traits of mangrove plant assemblages along an intertidal gradient in typical mangrove wetlands in Hainan, China. Global Ecology and Conservation, 48, e02749.
- [28] Analuddin, K., Rahim, S., Iswandi, R. M., Widayati, W., Iba, W., Jaya, L. G., ... & Nadaoka, K. (2025). Mangrove landscape dynamics and ecosystem services sustainability in the coral triangle Southeast Sulawesi, Indonesia. Regional Studies in Marine Science, 104632.
- [29] Isman, M., & Achmad, M. I. (2024). Hubungan Bahan Organik Total (BOT) Sedimen dengan Struktur Vegetasi Mangrove di Desa Bonto Bahari Kecamatan Bontoa Kabupaten Maros. Jurnal Riset Diwa Bahari (JRDB), 39-44.
- [30] Ahmed, S., Sarker, S. K., Friess, D. A., Kamruzzaman, M., Jacobs, M., Islam, M. A., ... & Pretzsch, H. (2022). Salinity reduces site quality and mangrove forest functions. From monitoring to understanding. Science of the Total Environment, 853, 158662.
- [31] Umar, F. R., Wonggo, D., Taher, N., Dotulong, V., Pandey, E. V., & Mentang, F. (2022). Fitokimia dan Total Fenol Ekstrak Air Subkritis Benang Sari dan Kepala Putik Bunga Mangrove Sonneratia alba. Media Teknologi Hasil Perikanan, 10(2), 127-132.
- [32] Basyuni, M., Mubaraq, A., Amelia, R., Wirasatriya, A., Iryanthony, S. B., Slamet, B., ... & Arifanti, V. B. (2025). Mangrove aboveground biomass estimation using UAV imagery and a constructed height model in Budeng–Perancak, Bali, Indonesia. Ecological Informatics, 86, 103037.
- [33] Wirasatriya, A., Pribadi, R., Iryanthony, S. B., Maslukah, L., Sugianto, D. N., Helmi, M., ... & Nadaoka, K. (2022). Mangrove above-ground biomass and carbon stock in the Karimunjawa-Kemujan islands estimated from unmanned aerial vehicle-imagery. Sustainability, 14(2), 706.
- [34] Dharmayasa, I. G. N. P., Sugiana, I. P., Simanullang, D. R., Putri, P. Y. A., Dewi, P. P., As-syakur, A. R., ... & Boonyasana, K. (2025). Geomorphology-Driven variations in mangrove carbon stocks and economic valuation across fringing, estuarine, and riverine ecosystems. Anthropocene Coasts, 8(1), 16.
