Main Article Content

Abstract

The soil surrounding the sugar cane garden is a promising habitat for cellulolytic bacteria because it contains a source of cellulose, hemicellulose, and other carbon sources derived from the sugar canes remaining organic matter.  This study attempts to determine the presence of cellulolytic bacteria isolated from sugar cane garden soil, as well as the ability of cellulolytic bacteria to degrade cellulose based on optical density and sugar reduction values isolated from sugarcane garden soil.  We collected soil samples from five points (T1, T2, T3, T4, T5), isolating the bacteria in CMC (Carboxyl Methyl Cellulose) medium, qualitatively testing the cellulase enzyme activity with Congo Red and Iodine Assays, and quantitatively using the DNS Assay. The results of the qualitative test with the Congo Red assay revealed that there were three positive isolates with a clearly visible clear zone, namely TII C4, TII C1, and TIV C4, and after quantitative supernatant tests, the OD values of all isolates were higher than the negative control in supernatant samples using 540nm wave length using spectrophotometer, by using synthetic cellulose called Carboxy Methyl cellulase (CMC) as a substrate in the cellulase enzyme test.

Keywords

Cellulase enzymes cellulolytic bacteria sugarcane gardens cellulose CMC

Article Details

How to Cite
1.
Muammar A, Arjuna M, Manullang M, Retnaningrum E. Cellulolytic Bacteria Isolation from Sugarcane Garden Soil. EKSAKTA [Internet]. 2026 Jan. 9 [cited 2026 Jan. 15];27(01):1-10. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/632

References

  1. [1] Sinatryani, D. (2014). Kelimpahan Bakteri Selulolitik di Muara Sungai Gunung Anyar Surabaya dan Bancaran Bangkalan (Doctoral dissertation, Universitas Airlangga).
  2. [2] Muammar, A., Oktaviana, I., Chohansandhika, J., & Handayani, N. S. N. (2021). Insertion of cellulase gene in yeast expression vector (pYY1 and pWYH257 Plasmid) as a candidate for cellulosic ethanol-producing strain. Biodiversitas Journal of Biological Diversity, 22(5).
  3. [3] Ruzki, A. A. (2013). Bio-Degradasi Selulosa Hasil Bio-Pretreatment Jerami Padi Secara Fermen-tasi Padat Menggunakan Isolat Actinomycetes Acp-1 dan Acp-7. Fakultas MIPA Universitas Lampung, 6.
  4. [4] Ramadhan, M. L., Buwono, I. D., & Mulyani, Y. (2012). Analisis Potensi Dan Karakterisasi Molekuler Gen 16s Rrna Bakteri Selulolitik Yang Diisolasi Dari Makroalga Eucheuma SP. Dan Sargassum SP. Sebagai Penghasil Enzim Selulase. Jurnal Perikanan Kelautan, 3(3).
  5. [5] Muammar, A., Manullang, M., Arjuna, M., & Retnaningrum, E. (2021). Isolation of cellulolytic microbes from bio-slurry. Eksakta: Berkala Ilmiah Bidang MIPA (E-ISSN: 2549-7464), 22(1), 27-34.
  6. [6] Lynd, L. R., Weimer, P. J., Van Zyl, W. H., & Pretorius, I. S. (2002). Microbial cellulose utilization: fundamentals and biotechnology. Microbiology and molecular biology reviews, 66(3), 506-577.
  7. [7] Schwarz, W. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Applied microbiology and biotechnology, 56(5), 634-649.
  8. [8] Brune, A. (2014). Symbiotic digestion of lignocellulose in termite guts. Nature Reviews Microbiology, 12(3), 168-180.
  9. [9] Flint, H. J., Bayer, E. A., Rincon, M. T., Lamed, R., & White, B. A. (2008). Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nature Reviews Microbiology, 6(2), 121-131.
  10. [10] Baldrian, P., & Valášková, V. (2008). Degradation of cellulose by basidiomycetous fungi. FEMS microbiology reviews, 32(3), 501-521.
  11. [11] Anindyawati, T. (2010). Potensi selulase dalam mendegradasi lignoselulosa limbah pertanian untuk pupuk organik. Berita selulosa, 45(2), 70-77.
  12. [12] Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine rumen. Applied and environmental microbiology, 43(4), 777-780.
  13. [13] Juturu, V., & Wu, J. C. (2014). Microbial cellulases: Engineering, production and applications. Renewable and sustainable energy reviews, 33, 188-203.
  14. [14] Fortes, C., Trivelin, P. C. O., & Vitti, A. C. (2012). Long-term decomposition of sugarcane harvest residues in Sao Paulo state, Brazil. Biomass and Bioenergy, 42, 189-198.
  15. [15] Souza, C. A. A. D., Silva, T. G. F. D., Souza, L. S. B. D., Moura, M. S. B. D., Silva, P. P., & Marin, F. R. (2020). Straw management effects on sugarcane growth, nutrient cycling and water use in the Brazilian semiarid region. Bragantia, 79, 525-533.
  16. [16] Liu, Y., Yang, H., Liu, Q., Zhao, X., Xie, S., Wang, Z., ... & Chen, B. (2021). Effect of two different sugarcane cultivars on rhizosphere bacterial communities of sugarcane and soybean upon intercropping. Frontiers in microbiology, 11, 596472.
  17. [17] Wei, X., Fu, T., He, G., Zhong, Z., Yang, M., Lou, F., & He, T. (2023). Characteristics of rhizosphere and bulk soil microbial community of Chinese cabbage (Brassica campestris) grown in Karst area. Frontiers in Microbiology, 14, 1241436.
  18. [18] de Alcântara Neto, F., Pinheiro, D. A., Rocha, S. M. B., Leite, M. R. L., Costa, R. M., da Silva, J. M., ... & Araujo, A. S. F. (2025). Bacterial Community in Sugarcane Rhizosphere Under Bacillus subtilis Inoculation and Straw Return. Soil Systems, 9(2), 44.
  19. [19] Wang, J., Bao, F., Wei, H., & Zhang, Y. (2024). Screening of cellulose-degrading bacteria and optimization of cellulase production from Bacillus cereus A49 through response surface methodology. Scientific Reports, 14(1), 7755.
  20. [20] Memane, A. M., Ghorpade, V. N., Phalke, D. H., Gosavi, A. B., Deshmukh, S. V., Jagtap, P. B., & Mandake, A. D. (2025). Effects of Long-Term Sugarcane Trash Management Practices on Soil Enzyme Activities in Maharashtra, India. International Journal of Plant & Soil Science, 37(9), 641-648.
  21. [21] de Oliveira Silva, M., Kuklinsky-Sobral, J., de Oliveira, E. C. A., & BetÃ, M. (2016). Bacteria associated with sugarcane in Northeastern Brazil. African Journal of Microbiology Research, 10(37), 1586-1594.
  22. [22] Fardiaz, S., (1992). Mikrobiologi Pangan I. Gramedia Pustaka Utama, Jakarta
  23. [23] Rao SNS. (1994). Mikroba Tanah dan Pertumbuhan Tanaman Edisi Kedua. UI Press, Jakarta
  24. [24] Muammar, A., Fajrin, S. A. R., & Retnaningrum, E. (2020, September). Cellobiohydrolase A (CBHA) gene cloning from Aspergillus niger to the yeast expression vector as a stages to create cellulosic ethanol strain. In AIP Conference Proceedings (Vol. 2260, No. 1). AIP Publishing.
  25. [25] Prem Anand, A. A., Vennison, S. J., Sankar, S. G., Gilwax Prabhu, D. I., Vasan, P. T., Raghuraman, T., ... & Vendan, S. E. (2010). Isolation and characterization of bacteria from the gut of Bombyx mori that degrade cellulose, xylan, pectin and starch and their impact on digestion. Journal of Insect Science, 10(1), 107.
  26. [26] Zverlov, V. V., Höll, W., & Schwarz, W. H. (2003). Enzymes for digestion of cellulose and other polysaccharides in the gut of longhorn beetle larvae, Rhagium inquisitor L.(Col., Cerambycidae). International biodeterioration & biodegradation, 51(3), 175-179.
  27. [27] Fikrinda, N. (2000). Isolasi dan Karakterisasi Bakteri Penghasil Selulase Ekstermofilik dari Ekosistem Air Hitam. Master Thesis, Program Studi Ilmu Tanah Institut Pertanian Bogor
  28. [28] Meryandini, A., Widosari, W., Maranatha, B., Sunarti, T. C., Rachmania, N., & Satria, H. (2009). Isolasi bakteri selulolitik dan karakterisasi enzimnya. Makara Journal of Science, 13(1), 7.
  29. [29] Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical chemistry, 31(3), 426-428.
  30. [30] Nurmayani, D. (2007). Isolasi dan uji potensi mikroorganisme selulolitik asal tanah gambut dan kayu sedang melapuk dalam mendekomposisikan kayu (Doctoral dissertation, Universitas Sumatera Utara).
  31. [31] Srivastava, N., Rathour, R., Jha, S., Pandey, K., Srivastava, M., Thakur, V. K., ... & Mishra, P. K. (2019). Microbial beta glucosidase enzymes: recent advances in biomass conversation for biofuels application. Biomolecules, 9(6), 220.