Main Article Content

Abstract

Pseudomonas aeruginosa is an opportunistic pathogen whose virulence is largely mediated by Exotoxin A and LasB (elastase), making them promising anti-virulence drug targets. This study aimed to evaluate the inhibitory potential of natural compounds against these two key proteins using an in silico approach. Pharmacophore-based virtual screening of HerbalDB compounds was performed by LigandScout software, followed by molecular docking using AutoDockTools-1.5.7 against Exotoxin A (PDB ID: 1AER) and LasB (PDB ID: 1U4G). Native ligands and co-crystallized inhibitors were used as docking controls to validate binding accuracy. Among the screened compounds, Epicatechin-(4β-6)-epicatechin-(4β-8)-catechin exhibited the strongest binding affinity to Exotoxin A (ΔG = −10.72 kcal·mol⁻¹), while Carpaine showed the highest affinity for LasB (ΔG = −8.91 kcal·mol⁻¹). The predicted interactions involved hydrogen bonds and hydrophobic interactions with active-site residues, comparable to the native inhibitors. Furthermore, ADMET analysis indicated favorable pharmacokinetic and drug-likeness properties. These findings suggest that selected natural compounds possess potential dual inhibitory activity against Exotoxin A and LasB, warranting further experimental validation as anti-virulence candidates for controlling P. aeruginosa infections.

Article Details

How to Cite
1.
Fariska AB, Linda Erlina, Ade Arsianti, Aryo Tedjo. In Silico Evaluation of Natural Compounds as Dual Inhibitors of Exotoxin A and LasB (Elastase) Virulence Proteins in Pseudomonas aeruginosa. EKSAKTA [Internet]. 2025 Nov. 19 [cited 2025 Nov. 19];26(04):480-99. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/631

References

  1. [1] Sathe, N., Beech, P., Croft, L., Suphioglu, C., Kapat, A., & Athan, E. (2023). Pseudomonas aeruginosa: Infections and novel approaches to treatment “Knowing the enemy” the threat of Pseudomonas aeruginosa and exploring novel approaches to treatment. Infectious medicine, 2(3), 178-194.
  2. [2] Reynolds, D., & Kollef, M. (2021). The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs, 81(18), 2117-2131.
  3. [3] Jørgensen, R., Merrill, A. R., Yates, S. P., Marquez, V. E., Schwan, A. L., Boesen, T., & Andersen, G. R. (2005). Exotoxin A–eEF2 complex structure indicates ADP ribosylation by ribosome mimicry. Nature, 436(7053), 979-984.
  4. [4] Casilag, F., Lorenz, A., Krueger, J., Klawonn, F., Weiss, S., & Häussler, S. (2016). The LasB elastase of Pseudomonas aeruginosa acts in concert with alkaline protease AprA to prevent flagellin-mediated immune recognition. Infection and immunity, 84(1), 162-171.
  5. [5] Qin, S., Xiao, W., Zhou, C., Pu, Q., Deng, X., Lan, L., ... & Wu, M. (2022). Pseudomonas aeruginosa: pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal transduction and targeted therapy, 7(1), 199.
  6. [6] Konstantinovic, J., Kany, A. M., Alhayek, A., Abdelsamie, A. S., Sikandar, A., Voos, K., ... & Hirsch, A. K. (2023). Inhibitors of the elastase LasB for the treatment of Pseudomonas aeruginosa lung infections. ACS central science, 9(12), 2205-2215.
  7. [7] Chandrasekaran, B., Agrawal, N., & Kaushik, S. (2019). Pharmacophore development.
  8. [8] Wolber, G., Seidel, T., Bendix, F., & Langer, T. (2008). Molecule-pharmacophore superpositioning and pattern matching in computational drug design. Drug discovery today, 13(1-2), 23-29.
  9. [9] Yanuar, A., Mun'im, A., Lagho, A. B. A., Syahdi, R. R., Rahmat, M., & Suhartanto, H. (2011). Medicinal plants database and three dimensional structure of the chemical compounds from medicinal plants in Indonesia. arXiv preprint arXiv:1111.7183.
  10. [10] Li, M., Dyda, F., Benhar, I., Pastan, I., & Davies, D. R. (1996). Crystal structure of the catalytic domain of Pseudomonas exotoxin A complexed with a nicotinamide adenine dinucleotide analog: implications for the activation process and for ADP ribosylation. Proceedings of the National Academy of Sciences, 93(14), 6902-6906.
  11. [11] Izzaty RE, Astuti B, Cholimah N. (2018) Full wwPDB X-ray Structure Validation Report. Angew Chemie Int Ed. 6(11), 951–952. 1967;7(2018):5–24.
  12. [12] Tintori, C., Corradi, V., Magnani, M., Manetti, F., & Botta, M. (2008). Targets looking for drugs: a multistep computational protocol for the development of structure-based pharmacophores and their applications for hit discovery. Journal of chemical information and modeling, 48(11), 2166-2179.
  13. [13] Sanders, M. P., McGuire, R., Roumen, L., de Esch, I. J., de Vlieg, J., Klomp, J. P., & de Graaf, C. (2012). From the protein's perspective: the benefits and challenges of protein structure-based pharmacophore modeling. MedChemComm, 3(1), 28-38.
  14. [14] Martínez-Rosell, G., Giorgino, T., & De Fabritiis, G. (2017). PlayMolecule ProteinPrepare: a web application for protein preparation for molecular dynamics simulations. Journal of chemical information and modeling, 57(7), 1511-1516.
  15. [15] Dolinsky, T. J., Czodrowski, P., Li, H., Nielsen, J. E., Jensen, J. H., Klebe, G., & Baker, N. A. (2007). PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic acids research, 35(suppl_2), W522-W525.
  16. [16] Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current topics in medicinal chemistry, 18(20), 1755-1768.
  17. [17] Ban, T., Ohue, M., & Akiyama, Y. (2018). Multiple grid arrangement improves ligand docking with unknown binding sites: Application to the inverse docking problem. Computational biology and chemistry, 73, 139-146.
  18. [18] Hubbard, R. E., & Haider, M. K. (2010). Hydrogen bonds in proteins: role and strength. Encyclopedia of life sciences, 1, 1-6.
  19. [19] Kusuma, S. A. F., Manan, W. S., & Budiman, F. A. J. A. R. (2017). Inhibitory effect of red piper betel leaf ethanol extract (Piper crocatum Ruiz and Pav.) against Trichomonas vaginalis trophozoites in vitro. Asian J. Pharm. Clin. Res, 10, 311-314.
  20. [20] Kusuma, S. A. F., Zuhrotun, A., & Meidina, F. B. (2016). Antibacterial spectrum of ethanol extract of Indonesian red piper betel leaf (Piper crocatum Ruiz & Pav) against Staphylococcus species. Int J Pharma Sci Res, 7(11), 448-452.
  21. [21] Damayanti, S., & Ibrahim, S. (2018). Interaction binding study of dimethylamylamine with functional monomers to design a molecular imprinted polymer for doping analysis. Journal of Applied Pharmaceutical Science, 8(10), 025-031.
  22. [22] Cadenas Jiménez, I., Badía Tejero, A. M., López-Causapé, C., Morosini, M. I., Portillo-Calderón, I., Machado, M., ... & Gudiol, C. (2025). Molecular epidemiology and antimicrobial resistance profiles of Pseudomonas aeruginosa causing bloodstream infections in neutropenic cancer patients. Frontiers in Microbiology, 16, 1681506.
  23. [23] Li, D., Zhang, L., Liang, J., Deng, W., Wei, Q., & Wang, K. (2021). Biofilm formation by Pseudomonas aeruginosa in a novel septic arthritis model. Frontiers in cellular and infection microbiology, 11, 724113.
  24. [24] Pope, C. N., Schlenk, D., & Baud, F. J. (2020). History and basic concepts of toxicology. In An Introduction to Interdisciplinary Toxicology (pp. 3-15). Academic Press.
  25. [25] Pollastri, M. P. (2010). Overview on the Rule of Five. Current protocols in pharmacology, 49(1), 9-12.
  26. [26] Adiga, R. A. M. A. (2019). Molecular Docking of Hyrtimomine AK from Marine Sponge Hyrtios Spp. as Anticancer Target of Phosphoinositide-dependent Kinase 1. Asian J. Pharm. Clin. Res, 12, 130-135.
  27. [27] Teng, F., Wang, L., Wen, J., Tian, Z., Wang, G., & Peng, L. (2025). Epicatechin gallate and its analogues interact with sortase A and β-lactamase to suppress Staphylococcus aureus virulence. Frontiers in Cellular and Infection Microbiology, 15, 1537564.
  28. [28] Wilson JW. (2020). Bacterial pathogens. Cancer Treat Res.161:91–128.
  29. [29] Karbasizade, V., Dehghan, P., Sichani, M. M., Shahanipoor, K., Sepahvand, S., Jafari, R., & Yousefian, R. (2017). Evaluation of three plant extracts against biofilm formation and expression of quorum sensing regulated virulence factors in Pseudomonas aeruginosa. Pakistan Journal of pharmaceutical sciences, 30.
  30. [30] Shen, M., Tian, S., Li, Y., Li, Q., Xu, X., Wang, J., & Hou, T. (2012). Drug-likeness analysis of traditional Chinese medicines: 1. property distributions of drug-like compounds, non-drug-like compounds and natural compounds from traditional Chinese medicines. Journal of cheminformatics, 4(1), 31.