Main Article Content

Abstract

The synthesis of sodium aluminate from aluminum and sodium hydroxide was successfully conducted to optimize its potential as a precursor for zeolite production. Aluminum was reacted with NaOH solution under continuous stirring for five hours, with variations in pH and Al-to-NaOH molar ratio to determine optimal synthesis conditions. The highest aluminum conversion (94.33%) was achieved at pH 13.6 and an Al-to-NaOH molar ratio of 1:4. Fourier-transform infrared (FTIR) spectroscopy confirmed the formation of tetrahedral [AlO₄]⁻ units through characteristic aluminate vibrational bands at 624 and 727 cm⁻¹. X-ray diffraction (XRD) analysis revealed sharp reflections at 2θ ≈ 34.8°, corresponding to crystalline NaAlO₂ (JCPDS No. 33-1200), indicating high crystallinity and phase purity. Scanning electron microscopy coupled with energy-dispersive X-ray (SEM–EDX) analysis showed irregular plate-like crystalline particles with a near-stoichiometric Na:Al ratio (~1:1), confirming compositional homogeneity. Overall, optimized alkalinity and stoichiometry were found to be critical for producing highly crystalline and compositionally pure sodium aluminate, suggesting its suitability as a high-quality, environmentally friendly precursor for zeolite synthesis.

Keywords

Sodium aluminate, synthesis, aluminum, sodium hydroxide characterization

Article Details

How to Cite
1.
Dinalia D, Syamsi Aini, Jon Efendi. Synthesis and Characterization of Sodium Aluminate from Aluminum and Sodium Hydroxide . EKSAKTA [Internet]. 2025 Dec. 8 [cited 2025 Dec. 16];26(04):500-15. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/627

References

  1. [1] de Jesus, J. O. N., Medeiros, D. L., Esquerre, K. P. O., Sahin, O., & de Araujo, W. C. (2024). Water treatment with aluminum sulfate and tanin-based biocoagulant in an oil refinery: the technical, environmental, and economic performance. Sustainability, 16(3), 1191.
  2. [2] Adesanya, E., Perumal, P., Luukkonen, T., Yliniemi, J., Ohenoja, K., Kinnunen, P., & Illikainen, M. (2021). Opportunities to improve sustainability of alkali-activated materials: A review of side-stream based activators. Journal of Cleaner Production, 286, 125558.
  3. [3] Ri, J. H., Pak, Y. S., & Yun, K. S. (2020). Preparation Of Cement Grinding Aids Based On Alumina Compounds. Bilimsel Madencilik Dergisi, 59(2), 123-129.
  4. [4] Ming, X., Li, Q., & Jiang, W. (2021). Application of Aluminum Sulfate in the Treatment of Papermaking White Water. BioResources, 16(1).
  5. [5] Damjanovic, V., Filipovic, R., Obrenovic, Z., Perusic, M., Kostic, D., Smiljanic, S., & Stopic, S. (2023). Influence of process parameters in three-stage purification of aluminate solution and aluminum hydroxide. Metals, 13(11), 1816.
  6. [6] Rozhkovskaya, A., Rajapakse, J., & Millar, G. J. (2021). Optimisation of zeolite LTA synthesis from alum sludge and the influence of the sludge source. Journal of Environmental Sciences, 99, 130-142.
  7. [7] Awala, H., Kunjir, S. M., Vicente, A., Gilson, J. P., Valtchev, V., Seblani, H., ... & Mintova, S. (2021). Crystallization pathway from a highly viscous colloidal suspension to ultra-small FAU zeolite nanocrystals. Journal of Materials Chemistry A, 9(32), 17492-17501.
  8. [8] Zhao, Y., Zheng, Y., Peng, Y., He, H., & Sun, Z. (2021). Characteristics of poly-silicate aluminum sulfate prepared by sol method and its application in Congo red dye wastewater treatment. RSC advances, 11(60), 38208-38218.
  9. [9] U. Medhat, T. A. M. Abd El Razek, and A. M. Abd Elbasier. (2024). Production of Sodium Silicate and Sodium Aluminate From Alum Production Waste, J. Environ. Sci., vol. 53, no. 3.
  10. [10] Cheng, L., Wang, Y., Wang, B., Qi, T., Liu, G., Zhou, Q., ... & Li, X. (2022). Phase transformation of desilication products in red mud dealkalization process. Journal of Sustainable Metallurgy, 8(1), 541-550.
  11. [11] Liu, S., Liu, Z., Yan, H., Li, M., & Xia, C. (2023). Desulfurization by Adding Sodium Nitrate in the Production of Alumina from High-Sulfur Bauxite. JOM: The Journal of The Minerals, Metals & Materials Society (TMS), 75(5).
  12. [12] Yoldi, M., Fuentes-Ordoñez, E. G., Korili, S. A., & Gil, A. (2019). Efficient recovery of aluminum from saline slag wastes. Minerals Engineering, 140, 105884.
  13. [13] Graham, T. R., Hu, J. Z., Jaegers, N. R., Zhang, X., Pearce, C. I., & Rosso, K. M. (2022). An amorphous sodium aluminate hydrate phase mediates aluminum coordination changes in highly alkaline sodium hydroxide solutions. Inorganic Chemistry Frontiers, 9(24), 6344-6357.
  14. [14] Ibsaine, F., Azizi, D., Dionne, J., Tran, L. H., Coudert, L., Pasquier, L. C., & Blais, J. F. (2023). Conversion of aluminosilicate residue generated from lithium extraction process to NaX zeolite. Minerals, 13(12), 1467.
  15. [15] Yoldi, M., Fuentes-Ordoñez, E. G., Korili, S. A., & Gil, A. (2020). Zeolite synthesis from aluminum saline slag waste. Powder Technology, 366, 175-184.
  16. [16] Tietz, T., Lenzner, A., Kolbaum, A. E., Zellmer, S., Riebeling, C., Gürtler, R., ... & Hensel, A. (2019). Aggregated aluminium exposure: risk assessment for the general population. Archives of toxicology, 93(12), 3503-3521.
  17. [17] Lamparelli, E. P., Marino, M., Szychlinska, M. A., Della Rocca, N., Ciardulli, M. C., Scala, P., ... & Santoro, A. (2023). The other side of plastics: Bioplastic-based nanoparticles for drug delivery systems in the brain. Pharmaceutics, 15(11), 2549.
  18. [18] Sanders, R. E., & Marshall, G. J. (2023). Aluminum: Technology, Industry, and Applications. ASM International.
  19. [19] Harmaji, A., Jafari, R., & Simard, G. (2024). Valorization of residue from aluminum industries: a review. Materials, 17(21), 5152.
  20. [20] Torrez-Herrera, J. J., Fuentes-Ordoñez, E. G., Korili, S. A., & Gil, A. (2021). Evidence for the synthesis of La-hexaaluminate from aluminum-containing saline slag wastes: Correction of structural defects and phase purification at low temperature. Powder Technology, 377, 80-88.
  21. [21] Liu, W., Pouvreau, M., Stack, A. G., Yang, X., & Clark, A. E. (2022). Concentration dependent interfacial chemistry of the NaOH (aq): gibbsite interface. Physical Chemistry Chemical Physics, 24(35), 20998-21008.
  22. [22] Graham, T. R., Gorniak, R., Dembowski, M., Zhang, X., Clark, S. B., Pearce, C. I., ... & Rosso, K. M. (2020). Solid-state recrystallization pathways of sodium aluminate hydroxy hydrates. Inorganic Chemistry, 59(10), 6857-6865.
  23. [23] Hausmann, J. N., Traynor, B., Myers, R. J., Driess, M., & Menezes, P. W. (2021). The pH of aqueous NaOH/KOH solutions: a critical and non-trivial parameter for electrocatalysis. ACS Energy Letters, 6(10), 3567-3571.
  24. [24] Nienhuis, E. T., Pouvreau, M., Graham, T. R., Prange, M. P., Page, K., Loring, J. S., ... & Wang, H. W. (2022). Structure and reactivity of sodium aluminate complexes in alkaline solutions. Journal of Molecular Liquids, 367, 120379.
  25. [25] Takei, S., Kinoshita, H., & Murase, T. (2025). Application of Energy-Dispersive X-Ray Fluorescence Spectrometry for Examination of Foreign Bodies in Forensic Practice.
  26. [26] A. S. Deepi, S. D. Priya, C. E. F. Christy, and A. S. Nesaraj. (2022). Facile Synthesis, Analysis of Physico-Chemical Properties and Tape Casting of Al2O3 Nanoparticles, Asian J. Chem., vol. 34, no. 10, pp. 2651–2656.
  27. [27] Marinos, D., Kotsanis, D., Alexandri, A., Balomenos, E., & Panias, D. (2021). Carbonation of sodium aluminate/sodium carbonate solutions for precipitation of alumina hydrates—avoiding dawsonite formation. Crystals, 11(7), 836.
  28. [28] Fadhilah, N., Muharja, M., Risanti, D. D., Wahyuono, R. A., Satrio, D., Khamil, A. I., & Fadilah, S. N. (2023). Kinetic study of the aluminum–water reaction using NaOH/NaAlO2 catalyst for hydrogen production from aluminum cans waste. Bulletin of Chemical Reaction Engineering & Catalysis, 18(4), 615-626.
  29. [29] Pedroza-Solis, C. D., De la Rosa, J. R., Lucio-Ortiz, C. J., Del Río, D. A. D. H., González-Casamachin, D. A., García, T. C. H., ... & Rangel, L. S. (2021). Thermocatalytic degradation of lignin monomer coniferyl aldehyde by aluminum–boron oxide catalysts. Comptes Rendus. Chimie, 24(S1), 1-17.
  30. [30] Mashkovtsev, M., Tarasova, N., Baksheev, E., Rychkov, V., Zhuravlev, N., Solodovnikova, P., & Galiaskarova, M. (2023). Spectroscopic study of five-coordinated thermal treated alumina formation: FTIR and NMR applying. International Journal of Molecular Sciences, 24(6), 5151.
  31. [31] Dembowski, M., Prange, M. P., Pouvreau, M., Graham, T. R., Bowden, M. E., Schenter, G. K., ... & Pearce, C. I. (2020). Inference of principal species in caustic aluminate solutions through solid-state spectroscopic characterization. Dalton Transactions, 49(18), 5869-5880.
  32. [32] Kabekkodu, S. N., Dosen, A., & Blanton, T. N. (2024). 5+: a comprehensive powder diffraction file™ for materials characterization. Powder Diffraction, 39(2), 47-59.
  33. [33] Proskurnina, N. V., Voronin, V. I., Shekhtman, G. S., & Kabanova, N. A. (2020). Crystal structure of NaFeO2 and NaAlO2 and their correlation with ionic conductivity. Ionics, 26(6), 2917-2926.
  34. [34] Durai, L., Gopalakrishnan, A., & Badhulika, S. (2022). Solid-state synthesis of β-NaAlO 2 nanoflakes as an anode material for high-performance sodium-ion batteries. Materials Chemistry Frontiers, 6(19), 2913-2920.