Main Article Content
Abstract
Sarcopenia, the age-related decline in muscle mass and function, poses a significant global health challenge. This systematic review synthesizes evidence from preclinical studies published between 2020 and 2025 to elucidate the molecular pathways through which phytochemicals prevent sarcopenia. Following PRISMA guidelines, a systematic search of databases identified 16 eligible studies. The analysis reveals that phytochemicals, including flavonoids, polyphenols, and botanical extracts, mitigate muscle atrophy by concurrently enhancing anabolic signaling via the IGF-1/PI3K/Akt/mTOR axis, suppressing proteolysis, improving mitochondrial biogenesis, and reducing oxidative stress and inflammation. Notably, combinatorial formulations and multi-target extracts demonstrate superior efficacy. The review concludes that phytochemicals represent a promising multi-targeted strategy against sarcopenia; however, this promising potential necessitates future validation through standardized clinical trials to establish efficacy and safety in human populations.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Wei, S., Nguyen, T. T., Zhang, Y., Ryu, D., & Gariani, K. (2023). Sarcopenic obesity: epidemiology, pathophysiology, cardiovascular disease, mortality, and management. Frontiers in endocrinology, 14, 1185221.
- [2] Kim, J., Lee, J. Y., & Kim, C. Y. (2023). A comprehensive review of pathological mechanisms and natural dietary ingredients for the management and prevention of sarcopenia. Nutrients, 15(11), 2625.
- [3] He, X., Song, Y., Ma, L., Ainsworth, B. E., Liu, Y., & Chen, N. (2022). Prevalence and factors influencing sarcopenia among community-dwelling older adults using the Asian Working Group for Sarcopenia Definition. Clinical interventions in aging, 1707-1727.
- [4] He, X., Song, Y., Ma, L., Ainsworth, B. E., Liu, Y., & Chen, N. (2022). Prevalence and factors influencing sarcopenia among community-dwelling older adults using the Asian Working Group for Sarcopenia Definition. Clinical interventions in aging, 1707-1727.
- [5] Ziemkiewicz, N., Hilliard, G., Pullen, N. A., & Garg, K. (2021). The role of innate and adaptive immune cells in skeletal muscle regeneration. International journal of molecular sciences, 22(6), 3265.
- [6] Wang, D. T., Yang, Y. J., Huang, R. H., Zhang, Z. H., & Lin, X. (2015). Myostatin activates the ubiquitin‐proteasome and autophagy‐lysosome systems contributing to muscle wasting in chronic kidney disease. Oxidative medicine and cellular longevity, 2015(1), 684965.
- [7] Dowling, P., Gargan, S., Swandulla, D., & Ohlendieck, K. (2023). Fiber-type shifting in sarcopenia of old age: proteomic profiling of the contractile apparatus of skeletal muscles. International Journal of Molecular Sciences, 24(3), 2415.
- [8] Lim, J. Y., & Frontera, W. R. (2023). Skeletal muscle aging and sarcopenia: Perspectives from mechanical studies of single permeabilized muscle fibers. Journal of biomechanics, 152, 111559.
- [9] Pascual-Fernández, J., Fernández-Montero, A., Córdova-Martínez, A., Pastor, D., Martínez-Rodríguez, A., & Roche, E. (2020). Sarcopenia: molecular pathways and potential targets for intervention. International Journal of Molecular Sciences, 21(22), 8844.
- [10] Vainshtein, A., & Sandri, M. (2020). Signaling pathways that control muscle mass. International journal of molecular sciences, 21(13), 4759.
- [11] Mankhong, S., Kim, S., Moon, S., Kwak, H. B., Park, D. H., & Kang, J. H. (2020). Experimental models of sarcopenia: bridging molecular mechanism and therapeutic strategy. Cells, 9(6), 1385.
- [12] Marzetti, E., Privitera, G., Simili, V., Wohlgemuth, S. E., Aulisa, L., Pahor, M., & Leeuwenburgh, C. (2010). Multiple pathways to the same end: mechanisms of myonuclear apoptosis in sarcopenia of aging. The Scientific World Journal, 10(1), 340-349.
- [13] Sakuma, K., & Yamaguchi, A. (2010). Molecular mechanisms in aging and current strategies to counteract sarcopenia. Current aging science, 3(2), 90-101.
- [14] Li, M., Qin, Y., Geng, R., Fang, J., Kang, S. G., Huang, K., & Tong, T. (2025). Effects and mechanisms of phytochemicals on skeletal muscle atrophy in glucolipid metabolic disorders: current evidence and future perspectives. Food Innovation and Advances, 4(1), 83-98.
- [15] Yoon, Y. E., Ju, S. H., Kim, Y., & Lee, S. J. (2025). Natural Flavonoids for the Prevention of Sarcopenia: Therapeutic Potential and Mechanisms. International journal of molecular sciences, 26(15), 7458.
- [16] Sun, Y., Zheng, Q., Sun, J., Wang, L., & Li, Y. (2024). Phytonutrients as potential dietary supplements to ameliorate sarcopenia via the involvement of autophagic pathway. Food Reviews International, 40(9), 2539-2579.
- [17] Vargas-Mendoza, N., Madrigal-Santillán, E., Álvarez-González, I., Madrigal-Bujaidar, E., Anguiano-Robledo, L., Aguilar-Faisal, J. L., ... & Morales-González, J. A. (2022). Phytochemicals in skeletal muscle health: effects of curcumin (from Curcuma longa Linn) and sulforaphane (from Brassicaceae) on muscle function, recovery and therapy of muscle atrophy. Plants, 11(19), 2517.
- [18] Medoro, A., Scapagnini, G., & Davinelli, S. (2024). Polyphenol supplementation and sarcopenia: A systematic review and Meta-Analysis of clinical trials. The Journal of frailty & aging, 13(4), 432-440.
- [19] Jeong, H. Y., & Kwon, O. (2021). Dietary phytochemicals as a promising nutritional strategy for sarcopenia: a systematic review and meta-analysis of randomized controlled trials. Applied Biological Chemistry, 64(1), 60.
- [20] Calvani, R., Picca, A., Coelho-Júnior, H. J., Tosato, M., Marzetti, E., & Landi, F. (2023). Diet for the prevention and management of sarcopenia. Metabolism, 146, 155637.
- [21] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
- [22] Hooijmans, C. R., Rovers, M. M., De Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC medical research methodology, 14(1), 43.
- [23] de Castro, J. M., da Silva Melo, A., Silveira, B. L., Martins, I. A. S., Marçal, M. M., Dal Bosco, T., ... & Torres, I. L. (2025). Oral apigenin prevents obesity-related muscular atrophy, but not obesity itself, in middle-aged rats fed a high-calorie diet. Biomedicine & Pharmacotherapy, 189, 118342.
- [24] Cano-Martínez, A., Méndez-Castro, J. A., García-Vázquez, V. E., Carreón-Torres, E., Díaz-Díaz, E., Sánchez-Aguilar, M., ... & Rubio-Ruíz, M. E. (2025). A Combination of Resveratrol and Quercetin Prevents Sarcopenic Obesity: Its Role as a Signaling Inhibitor of Myostatin/ActRIIA and ActRIIB/Smad and as an Enhancer of Insulin Actions. International Journal of Molecular Sciences, 26(10), 4952.
- [25] Oh, H. J., Jin, H., & Lee, B. Y. (2023). Hesperidin ameliorates sarcopenia through the regulation of inflammaging and the AKT/mTOR/FoxO3a signaling pathway in 22–26-month-old mice. Cells, 12(15), 2015.
- [26] Lee, H., Lee, J., Kim, H. J., & Kwon, O. (2023). Short-term treatment of Agastache rugosa extract combined with voluntary wheel running exercise alters the size and type of skeletal muscle fibers and improves anabolic resistance in middle-aged mice. Journal of Functional Foods, 109, 105803.
- [27] Tian, S., Zhao, H., Liu, J., Ma, X., Zheng, L., Guo, H., & Jiang, Y. (2022). Metabolomics reveals that alcohol extract of propolis alleviates D-gal-induced skeletal muscle senescence in mice. Food Bioscience, 49, 101885.
- [28] Sakata, Y., Okamoto, T., Oshio, K., Nakamura, H., Iwamoto, H., Namba, K., ... & Yoshizawa, F. (2016). Dietary supplementation with shiikuwasha extract attenuates dexamethasone-induced skeletal muscle atrophy in aged rats. Springerplus, 5(1), 816.
- [29] Lee, J. H., Kang, H., Ban, G. T., Kim, B. K., Lee, J., Hwang, H., ... & Choi, J. S. (2023). Proteome network analysis of skeletal muscle in lignan-enriched nutmeg extract-fed aged mice. Journal of Analytical Science and Technology, 14(1), 11.
- [30] Kim, C., Kang, M., Kim, Y., & Hwang, J. K. (2025). Inhibitory effect of standardized Kaempferia parviflora extract on sarcopenia by improving protein metabolism pathways in aged C57BL/6J mice. Journal of Traditional and Complementary Medicine.
- [31] Lee, H., Eo, Y., Kim, S. Y., & Lim, Y. (2024). Guava leaf extract attenuated muscle proteolysis in dexamethasone induced muscle atrophic mice via ubiquitin proteasome system, mTOR-autophagy, and apoptosis pathway. Nutrition Research, 127, 97-107.
- [32] Lee, H., Eo, Y., Kim, S. Y., & Lim, Y. (2024). Guava leaf extract attenuated muscle proteolysis in dexamethasone induced muscle atrophic mice via ubiquitin proteasome system, mTOR-autophagy, and apoptosis pathway. Nutrition Research, 127, 97-107.
- [33] Li, Y., Liu, Z., Yan, H., Zhou, T., Zheng, L., Wen, F., ... & Zhang, Z. (2025). Polygonatum sibiricum polysaccharide ameliorates skeletal muscle aging and mitochondrial dysfunction via PI3K/Akt/mTOR signaling pathway. Phytomedicine, 136, 156316.
- [34] Huang, J., Tong, Y., Wang, S., Tagawa, T., Seki, Y., Ma, S., ... & Suzuki, K. (2024). 8-Week Kaempferia parviflora Extract Administration Improves Submaximal Exercise Capacity in Mice by Enhancing Skeletal Muscle Antioxidant Gene Expression and Plasma Antioxidant Capacity. Antioxidants, 13(9), 1147.
- [35] Long, Y., Wu, Y., Zhong, Y., Wu, Y., Ye, H., Luo, Y., ... & Wang, M. (2024). Resveratrol as a potential therapeutic agent for sarcopenic obesity: Insights from in vivoperiments. Biomedicine & Pharmacotherapy, 179, 117396.
- [36] Zhaoyu, L., Xiaomeng, Y., Na, L., Jiamin, S., Guanhua, D., & Xiuying, Y. (2024). Roles of natural products on myokine expression and secretion in skeletal muscle atrophy. General and Comparative Endocrinology, 355, 114550.