Main Article Content
Abstract
Traumatic brain injury (TBI) is a major global health problem that often leads to systemic complications beyond neurological damage, notably gastrointestinal (GI) dysfunction. The mechanisms linking TBI to GI complications remain inconclusive. We conducted a systematic review using current clinical evidence on the pathophysiological processes underlying post-TBI GI dysfunction, focusing on two principal mechanisms: inflammatory-oxidative processes and hypothalamic–pituitary–adrenal (HPA) axis alterations. A comprehensive search was conducted through PubMed, Cochrane Library, and Scopus to identify eligible studies. Evidence indicates that surges of proinflammatory mediators and chemokines, along with reduced anti-inflammatory mediators, drive systemic immune imbalance. Moreover, iNOS upregulation and gut microbiota dysbiosis contribute to mucosal injury. Concurrently, HPA axis dysregulation exerts a bidirectional impact. Elevated ACTH and cortisol reflect an intact stress response that may stabilise metabolism if combined with early enteral nutrition, whereas critical illness-related corticosteroid insufficiency (CIRCI) and hypergastrinemia are strongly associated with gastrointestinal bleeding and mortality. Together, these findings underscore the synergistic role of inflammatory and endocrine disturbances in driving gastrointestinal vulnerability after TBI. Understanding these mechanisms is crucial for developing biomarker-based monitoring and targeted interventions to improve prognosis and reduce GI-related complications in TBI patients.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Yan, J., Wang, C., & Sun, B. (2025). Global, regional, and national burdens of traumatic brain injury from 1990 to 2021. Frontiers in public health, 13, 1556147.
- [2] Zhong, H., Feng, Y., Shen, J., Rao, T., Dai, H., Zhong, W., & Zhao, G. (2025). Global burden of traumatic brain injury in 204 countries and territories from 1990 to 2021. American journal of preventive medicine.
- [3] Orr, T. J., Emal Lesha, Kramer, A. H., Arba Cecia, Dugan, J. E., Schwartz, B., & Einhaus, S. L. (2024). Traumatic brain injury: a comprehensive review of biomechanics and molecular pathophysiology. World Neurosurg., 185–185.
- [4] Ng, S. Y., & Lee, A. Y. W. (2019). Traumatic brain injuries: pathophysiology and potential therapeutic targets. Front Cell Neurosci. Frontiers Media S.A.
- [5] Freire, M. A. M., Rocha, G. S., Bittencourt, L. O., Falcao, D., Lima, R. R., & Cavalcanti, J. R. L. P. (2023, August 1). Cellular and Molecular Pathophysiology of Traumatic Brain Injury: What Have We Learned So Far? Biology. Multidisciplinary Digital Publishing Institute (MDPI).
- [6] Yan, A., Torpey, A., Morrisroe, E., Andraous, W., Costa, A., & Bergese, S. (2024). Clinical Management in Traumatic Brain Injury. Biomedicines, 12(4), 781.
- [7] Weber, J. T. (2012). Altered calcium signaling following traumatic brain injury. Frontiers in Pharmacology, 3 APR.
- [8] Metwally, E., Zhao, G., Wang, Q., & Zhang, Y. Q. (2021). Ttm50 facilitates calpain activation by anchoring it to calcium stores and increasing its sensitivity to calcium. Cell Research, 31(4), 433–449.
- [9] Basilio, A. V., Zeng, D., Pichay, L. A., Ateshian, G. A., Xu, P., Maas, S. A., & Morrison, B. (2024). Simulating Cerebral Edema and Ischemia After Traumatic Acute Subdural Hematoma Using Triphasic Swelling Biomechanics. Annals of Biomedical Engineering, 52(10), 2818–2830.
- [10] Huang, Y. K., Lin, C. K., Wang, C. C., Kuo, J. R., Lai, C. F., Chen, C. W., & Lin, B. S. (2021). A novel wireless optical technique for quantitative evaluation of cerebral perfusion pressure in a fluid percussion animal model of traumatic brain injury. Quantitative Imaging in Medicine and Surgery, 11(6), 2388–2396.
- [11] Sabet, N., Soltani, Z., & Khaksari, M. (2021, August 15). Multipotential and systemic effects of traumatic brain injury. J Neuroimmunol. Elsevier B.V.
- [12] El Baassiri, M. G., Raouf, Z., Badin, S., Escobosa, A., Sodhi, C. P., & Nasr, I. W. (2024). Dysregulated brain-gut axis in the setting of traumatic brain injury: review of mechanisms and anti-inflammatory pharmacotherapies. Journal of Neuroinflammation, 21(1), 124.
- [13] Zhou, Y., Lu, W., & Tang, W. (2021). Gastrointestinal failure score in children with traumatic brain injury. BMC Pediatrics, 21(1), 219.
- [14] McGraw, C., Briscoe, A., Reynolds, C., Carrick, M., Palacio, C. H., Waswick, W., … Bar-Or, D. (2024). Outcomes of patients with traumatic brain injury after stress ulcer prophylaxis: a retrospective multicenter study. Trauma Surgery and Acute Care Open, 9(1).
- [15] Mahmoodkhani, M., Naeimi, A., Zohrehvand, A., Sabouri, M., & Heidari, M. (2024). Gastrointestinal bleeding following traumatic brain injury: A clinical study on predisposing factors and outcomes. Caspian Journal of Internal Medicine, 15(4), 673–681.
- [16] Lin, Y., Hou, C., Wang, C., Chen, R., Zhu, Y., Zhou, Q., … Li, S. (2024). Research progress on digestive disorders following traumatic brain injury. Frontiers in Immunology. Frontiers Media SA.
- [17] Ghaemi, M., & Kheradmand, D. (2025). The gut-brain axis in traumatic brain Injury: Literature review. Journal of Clinical Neuroscience, 136, 111258.
- [18] Cáceres, E., Olivella, J. C., Di Napoli, M., Raihane, A. S., & Divani, A. A. (2024). Immune Response in Traumatic Brain Injury. Current neurology and neuroscience reports, 24(12), 593–609.
- [19] Xiong, Y., Mahmood, A., & Chopp, M. (2018, June 1). Current understanding of neuroinflammation after traumatic brain injury and cell-based therapeutic opportunities. Chinese Journal of Traumatology - English Edition. Elsevier B.V.
- [20] Cannon, A. R., Anderson, L. J., Galicia, K., Murray, M. G., Kamran, A. S., Li, X., … Choudhry, M. A. (2023). Traumatic brain injury-induced inflammation and gastrointestinal motility dysfunction. Shock, 59(4), 621–626.
- [21] Taheri, S., Karaca, Z., Mehmetbeyoglu, E., Hamurcu, Z., Yilmaz, Z., Dal, F., … Kelestimur, F. (2022). The role of apoptosis and autophagy in the hypothalamic-pituitary-adrenal (HPA) axis after traumatic brain injury (TBI). Int J Mol Sci, 23(24).
- [22] Ayerra, L., Shumilov, K., Ni, A., Aymerich, M. S., Friess, S. H., & Celorrio, M. (2025). Chronic traumatic brain injury induces neurodegeneration, neuroinflammation, and cognitive deficits in a T cell-dependent manner. Brain Research, 1850, 149446.
- [23] Sharma, R., Kambhampati, S. P., Zhang, Z., Sharma, A., Chen, S., Duh, E. I., … Kannan, R. M. (2020). Dendrimer mediated targeted delivery of sinomenine for the treatment of acute neuroinflammation in traumatic brain injury. Journal of Controlled Release, 323, 361–375.
- [24] Sayavedra, L., Yasir, M., Goldson, A., Brion, A., Le Gall, G., Moreno-Gonzalez, M., … Narbad, A. (2025). Bacterial microcompartments and energy metabolism drive gut colonization by Bilophila wadsworthia. Nature Communications, 16(1), 5049.
- [25] Deng, S., Pei, C., Cai, K., Huang, W., Xiao, X., Zhang, X., … Liao, Q. (2024). Lactobacillus acidophilus and its metabolite ursodeoxycholic acid ameliorate ulcerative colitis by promoting Treg differentiation and inhibiting M1 macrophage polarization. Frontiers in Microbiology, 15
- [26] Zhang, J., Zhang, C., Yu, L., Tian, F., Chen, W., & Zhai, Q. (2024). Analysis of the key genes of Lactobacillus reuteri strains involved in the protection against alcohol-induced intestinal barrier damage. Food & Function, 15(12), 6629–6641.
- [27] Yao, Y., Zhang, Y., Song, M., Fan, J., Feng, S., Li, J., … Liu, X. (2024). Lactobacillus alleviates intestinal epithelial barrier function through GPR43-mediated M2 macrophage polarization. Animal Diseases, 4(1), 20.
- [28] DeSana, A. J., Estus, S., Barrett, T. A., & Saatman, K. E. (2024). Acute gastrointestinal permeability after traumatic brain injury in mice precedes a bloom in Akkermansia muciniphila supported by intestinal hypoxia. Scientific Reports, 14(1), 2990.
- [29] You, W., Zhu, Y., Wei, A., Du, J., Wang, Y., Zheng, P., … Yang, X. (2022). Traumatic Brain Injury Induces Gastrointestinal Dysfunction and Dysbiosis of Gut Microbiota Accompanied by Alterations of Bile Acid Profile. Journal of Neurotrauma, 39(1–2), 227–237.
- [30] Geller, S., Umarnazarova, Z., Azimova, N., Usmonova, K., & Kamilova, A. (2025). Markers of enterocyte damage in celiac disease in children: is there an association with the clinical manifestations of the disease? Frontiers in Pediatrics, 13.
- [31] Huang, Q., Wu, Z., Zhang, Y., Wu, Y., Shi, C., & Liu, Y. (2023). Obesity Exacerbates Acute Gastrointestinal Injury and Intestinal Barrier Dysfunction in Early-Stage Acute Pancreatitis. The Turkish Journal of Gastroenterology, 34(4), 421–426.
- [32] Pagkou, D., Kogias, E., Foroglou, N., & Kotzampassi, K. (2024). Probiotics in Traumatic Brain Injury: New Insights into Mechanisms and Future Perspectives. Journal of Clinical Medicine, 13(15), 4546.
- [33] Gao, L., Zhang, M., & Zhou, X. (2020). The effect of early enteral nutrition combined with anti-infection intervention on gut bacteria translocation-related infections in patients with severe traumatic brain injury. International Journal of Clinical and Experimental Medicine, 13(7), 5130–5137.
- [34] Issangya, C. E., Msuya, D., Chilonga, K., Herman, A., Shao, E., Shirima, F., … Chugulu, S. (2020). Perioperative serum albumin as a predictor of adverse outcomes in abdominal surgery: prospective cohort hospital based study in Northern Tanzania. BMC Surgery, 20(1), 155.
- [35] Galata, C., Busse, L., Birgin, E., Weiß, C., Hardt, J., Reißfelder, C., & Otto, M. (2020). Role of Albumin as a Nutritional and Prognostic Marker in Elective Intestinal Surgery. Canadian Journal of Gastroenterology and Hepatology, 2020, 1–8.
- [36] Aksan, A., Wohlrath, M., Iqbal, T. H., Dignass, A., & Stein, J. (2020). Inflammation, but Not the Underlying Disease or Its Location, Predicts Oral Iron Absorption Capacity in Patients With Inflammatory Bowel Disease. Journal of Crohn’s and Colitis, 14(3), 316–322.
- [37] Chen, J., Li, Z., Wang, X., Fan, B., Deng, F., D.Yu, H., … Wang, X. (2022). Isomaltooligosaccharides Sustain the Growth of Prevotella Both In Vitro and in Animal Models. Microbiology Spectrum, 10(6).
- [38] Shin, J. H., Tillotson, G., MacKenzie, T. N., Warren, C. A., Wexler, H. M., & Goldstein, E. J. C. (2024). Bacteroides and related species: The keystone taxa of the human gut microbiota. Anaerobe, 85, 102819.
- [39] Bragazzi, M. C., Pianigiani, F., Venere, R., & Ridola, L. (2024). Dysbiosis in Inflammatory Bowel Disease and Spondyloarthritis: Still a Long Way to Go? Journal of Clinical Medicine, 13(8), 2237.
- [40] Martínez de Victoria Carazo, J., Vinuesa García, D., Serrano-Conde Sánchez, E., Peregrina Rivas, J. A., Ruíz Rodríguez, A. J., & Hernández Quero, J. (2023). Ruminococcus gnavus bacteremia: Literature review and a case report associated with acute flare of ulcerative colitis in an immunocompromised patient. Anaerobe, 82, 102762.
- [41] Wu, Y., Wu, Y., Wu, H., Wu, C., Ji, E., Xu, J., … Yang, H. (2021). Systematic Survey of the Alteration of the Faecal Microbiota in Rats With Gastrointestinal Disorder and Modulation by Multicomponent Drugs. Frontiers in Pharmacology, 12.
- [42] Rastogi, S., & Singh, A. (2022). Gut microbiome and human health: Exploring how the probiotic genus Lactobacillus modulate immune responses. Frontiers in Pharmacology, 13.
- [43] Sun, Y., Zhang, S., Nie, Q., He, H., Tan, H., Geng, F., … Nie, S. (2023). Gut firmicutes: Relationship with dietary fiber and role in host homeostasis. Critical Reviews in Food Science and Nutrition, 63(33), 12073–12088.
- [44] Tien, N. T. N., Choi, E. J., Thu, N. Q., Yu, S. J., Nguyen, D. N., Kim, D. H., … Lee, H. S. (2025). An exploratory multi-omics study reveals distinct molecular signatures of ulcerative colitis and Crohn’s disease and their correlation with disease activity. Journal of Pharmaceutical and Biomedical Analysis, 255, 116652.
- [45] Chen, D.-Q., Zhang, H.-J., Zhang, W., Feng, K., Liu, H., Zhao, H.-L., & Li, P. (2024). Tangshen Formula alleviates inflammatory injury against aged diabetic kidney disease through modulating gut microbiota composition and related amino acid metabolism. Experimental Gerontology, 188, 112393.
- [46] Kang, N., Fan, Z., Yang, L., Shen, J., Shen, Y., Fang, Z., … Wang, J. (2025). Camel Milk Protein Ameliorates Ulcerative Colitis by Modulating Gut Microbiota and Amino Acid Metabolism. Nutrients, 17(5), 780.
- [47] Garry, P. S., Ezra, M., Rowland, M. J., Westbrook, J., & Pattinson, K. T. S. (2015). The role of the nitric oxide pathway in brain injury and its treatment - From bench to bedside. Experimental Neurology. Academic Press Inc.
- [48] Hsieh, J. S., Howng, S. L., Huang, T. J., Wang, J. Y., & Chen, F. M. (2006). Endothelin-1, inducible nitric oxide synthase and macrophage inflammatory protein-1α in the pathogenesis of stress ulcer in neurotraumatic patients. Journal of Trauma - Injury, Infection and Critical Care, 61(4), 873–878.
- [49] Pourbagher-Shahri, A. M., Farkhondeh, T., Talebi, M., Kopustinskiene, D. M., Samarghandian, S., & Bernatoniene, J. (2021). An overview of no signaling pathways in aging. Molecules, 26(15).
- [50] Papi, S., Ahmadizar, F., & Hasanvand, A. (2019). The role of nitric oxide in inflammation and oxidative stress. Immunopathologia Persa. Nickan Research Institute.
- [51] Chen, T. (2024). Unveiling the significance of inducible nitric oxide synthase: Its impact on cancer progression and clinical implications. Cancer Letters, 592, 216931.
- [52] Farahani, A., Farahani, A., Kashfi, K., & Ghasemi, A. (2025). Inducible nitric oxide synthase (iNOS): More than an inducible enzyme? Rethinking the classification of NOS isoforms. Pharmacological Research, 216, 107781.
- [53] Mahmoud-Awny, M., Attia, A. S., Abd-Ellah, M. F., & El-Abhar, H. S. (2015). Mangiferin mitigates gastric ulcer in ischemia/reperfused rats: Involvement of PPAR-γ, NF-κB and Nrf2/HO-1 Signaling Pathways. PLoS ONE, 10(7).
- [54] Akmal, M. N., Abdel Aziz, I., & Nur Azlina, M. F. (2023). Piper sarmentosum Roxb. methanolic extract prevents stress-induced gastric ulcer by modulating oxidative stress and inflammation. Frontiers in Pharmacology, 13.
- [55] Xu, J., Wang, B., & Ao, H. (2025). Corticosterone effects induced by stress and immunity and inflammation: mechanisms of communication. Frontiers in Endocrinology, 16.
- [56] Katsu, Y., & Baker, M. E. (2021). Cortisol. In Handbook of Hormones (pp. 947–949). Elsevier.
- [57] Kageyama, K., Iwasaki, Y., & Daimon, M. (2021, November 1). Hypothalamic regulation of corticotropin-releasing factor under stress and stress resilience. International Journal of Molecular Sciences. MDPI.
- [58] Çayakar, A. (2021). Steroid usage in clinical practice. Ulusal Romatoloji Dergisi, 13(2), 73–84.
- [59] Marshall, W. A., Adams, L. M., & Weaver, J. L. (2022, October 1). The brain–gut axis in traumatic brain injury: implications for nutrition support. Curr Surg Rep. Springer.
- [60] Purkayastha, S., Stokes, M., & Bell, K. R. (2019, July 29). Autonomic nervous system dysfunction in mild traumatic brain injury: a review of related pathophysiology and symptoms. Brain Injury. Taylor and Francis Ltd.
- [61] Filaretova, L., Komkova, O., Sudalina, M., & Yarushkina, N. (2021). Non-Invasive Remote Ischemic Preconditioning May Protect the Gastric Mucosa Against Ischemia-Reperfusion-Induced Injury Through Involvement of Glucocorticoids. Frontiers in Pharmacology, 12.
- [62] Wang, J., Yu, K., & Zeng, Y. (2023). Early enteral nutrition intervention promotes multiple functional recovery in patients with traumatic intracerebral hemorrhage: A prospective randomized controlled study. Clinical Neurology and Neurosurgery, 234, 108010.
- [63] Peng, C., Li, J., Miao, Z., Wang, Y., Wu, S., Wang, Y., … Shen, X. (2022). Early life administration of Bifidobacterium bifidum BD-1 alleviates long-term colitis by remodeling the gut microbiota and promoting intestinal barrier development. Frontiers in Microbiology, 13.
- [64] Chen, X., Chai, Y., Wang, S.-B., Wang, J.-C., Yue, S.-Y., Jiang, R.-C., & Zhang, J.-N. (2020). Risk factors for corticosteroid insufficiency during the sub-acute phase of acute traumatic brain injury. Neural Regeneration Research, 15(7), 1259.
- [65] Zhu, C., Zhang, Y., Li, W., & Li, Q. (2021). Clinical observation of individualized nutritional formula on inflammation index, immune status and gastrointestinal tolerance in patients with severe head injury. Pakistan Journal of Medical Sciences, 37(4).
- [66] Urban, R. J., Pyles, R. B., Stewart, C. J., Ajami, N., Randolph, K. M., Durham, W. J., … Sheffield-Moore, M. (2020). Altered Fecal Microbiome Years after Traumatic Brain Injury. Journal of Neurotrauma, 37(8), 1037–1051.
- [67] Biteghe-Bi-Nzeng, A.-P., Wei, H., Chen, X., & Zhang, J. (2010). Evaluation of stress hormones in traumatic brain injury patients with gastrointestinal bleeding. Chinese Journal of Traumatology, 13(1), 25–31.
