Main Article Content
Abstract
This study aims to evaluate the effects of biofloc technology on the growth performance of Nile tilapia (Oreochromis niloticus) and to assess potential health risks associated with polyethylene terephthalate (PET) microplastic contamination in aquaculture systems. Three treatments were applied: aquaculture without biofloc and microplastics, aquaculture with biofloc but without microplastics, and aquaculture with biofloc combined with PET microplastics. The novelty of this research lies in the integration of biofloc technology with a quantitative health risk assessment approach aspect that has received limited attention in previous studies. Furthermore, this study specifically utilizes PET microplastics, which differ in physicochemical properties and toxicological potential from the commonly studied polyethylene (PE) microplastics. The results revealed that the best performance was observed in the treatment with biofloc but without microplastics, showing an average body weight (ABW) of 5.478 g/fish, an average daily gain (ADG) of 2.343 g/fish/day, and a specific growth rate (SGR) of 4.208%. In terms of health risk, this treatment also demonstrated low to moderate risk levels, with a Polymer Load Index (PLI) of 2.53, a Potential Health Index (PHI) of 11, and a Potential Ecological Risk Index (PERI) of 10. These findings indicate that biofloc technology is not only effective in enhancing fish growth performance but also contributes to mitigating the adverse impacts of microplastic contamination on fish health and food safety in aquaculture systems.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] N. Mashaii, F. Rajabipour, A. Bitaraf, H. Hosseinzadeh, M.S. Rohani, H. Sarsangi, M. Mohammadi. (2022). Reproductive Biology of Nile Tilapia, Oreochromis niloticus under the Brackish Water Culture Condition, Int. J. Food Sci. Agric., 6, 4–7.
- [2] Radi Ihlas Albani, T. Budiardi, Yani Hadiroseyani, Julie Ekasari. (2023). Production performance of Nile tilapia Oreochromis niloticus and mineral balance in aquaponic, biofloc, and aquabioponic culture systems, J. Akuakultur Indones., 22, 66–79.
- [3] A.B. Dauda. (2020). Biofloc technology: a review on the microbial interactions, operational parameters and implications to disease and health management of cultured aquatic animals, Rev. Aquac., 12, 1193–1210.
- [4] D. Deswati, O.N. Tetra, L.P. Isara, D.I. Roesma, H. Pardi. (2021). Samhong mustard cultivation by utilizing tilapia waste in nutrient film technique (Nft) aquaponics system based on bioflocs, and its impact on water quality, Rasayan J. Chem., 14 , 2559–2566.
- [5] A. Zhou, Y. Zhang, S. Xie, Y. Chen, X. Li, J. Wang, J. Zou. (2021). Microplastics and their potential effects on the aquaculture systems: a critical review, Rev. Aquac., 13, 719–733.
- [6] A. Rossatto, M.Z.F. Arlindo, M.S. de Morais, T.D. de Souza, C.S. Ogrodowski. (2023). Microplastics in aquatic systems: A review of occurrence, monitoring and potential environmental risks, Environ. Adv., 13, 100396.
- [7] Y. Shi, W. Chen, S. Yang, Y. Fan, L. Lu. (2024). Freshwater microplastics governance and sustainable development: Pollution status, interactions, policies, and prospective studies, Desalin. Water Treat., 320, 100704.
- [8] J. Jia, Q. Liu, E. Zhao, X. Li, X. Xiong, C. Wu. (2024). Biofilm formation on microplastics and interactions with antibiotics, antibiotic resistance genes and pathogens in aquatic environment, Eco-Environment Heal., 3, 516–528.
- [9] S. Hossain, H. Manan, Z.N.A. Shukri, R. Othman, A.S. Kamaruzzan, A.I.A. Rahim, H. Khatoon, T.M. Minhaz, Z. Islam, N.A. Kasan. (2023). Microplastics biodegradation by biofloc-producing bacteria: An inventive biofloc technology approach, Microbiol. Res., 266,
- [10] S. Ghatge, Y. Yang, J.H. Ahn, H.G. Hur. (2020). Biodegradation of polyethylene: a brief review, Appl. Biol. Chem., 63.
- [11] T. Ghosh. (2025). Microplastics bioaccumulation in fish: Its potential toxic effects on hematology, immune response, neurotoxicity, oxidative stress, growth, and reproductive dysfunction, Toxicol. Reports, 14, 101854.
- [12] X. Yin, J. Wu, Y. Liu, X. Chen, C. Xie, Y. Liang, J. Li, Z. Jiang. (2022). Accumulation of microplastics in fish guts and gills from a large natural lake: Selective or non-selective?, Environ. Pollut., 309.
- [13] U. Yogev, K.R. Sowers, N. Mozes, A. Gross. (2017). Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system, Aquaculture, 467, 118–126.
- [14] L.J. Meng, X. Hu, B. Wen, Y.H. Liu, G.Z. Luo, J.Z. Gao, Z.Z. Chen. (2023). Microplastics inhibit biofloc formation and alter microbial community composition and nitrogen transformation function in aquaculture, Sci. Total Environ., 866.
- [15] A. Hossain, B. Sheikh, M. Rahman, S. Alam. (2022). Effects Of Carbon-Nitrogen Ratio Manipulation On The Growth Performance, Body Composition Andimmi]Nity Of Stinging Catfish Ileteropneustes fossilis In A Biofloc Based.
- [16] Deswati, R. Zein, R. Dwisani, W. Elsa Fitri, A. Putra. (2023). Biofloc-based catfish cultivation and its effect on the dynamics of water quality,.
- [17] Deswati, Syafrizayanti, O.N. Tetra, K.P. Noval, A. Putra. (2025). Study on the dynamics of microplastics in the biofloc system for nile tilapia (Oreochromis niloticus) aquaculture, J. Ecol. Eng., 26, 273–287.
- [18] D. Ramakrishnan, M. Sathiyamoorthy. (2024). Seasonal distribution, source apportionment and risk exposure of microplastic contaminants along the Muttukadu backwater estuary, Tamil Nadu, India, Results Eng., 23, 102776.
- [19] K. Radhakrishnan, S. Krishnakumar, P. Prakasheswar, D. Pradhap, N. Akramkhan, S. Gomathi, M. Krishnaveni, R. Anshu, S.M. Hussain. (2023). Potential Ecological Risk Assessment Studies Based on Source and Distribution of Microplastics From the Surface Sediments of Tropical Backwaters, Kerala, India, Total Environ. Res. Themes, 7, 100063.
- [20] X. Hu, L.J. Meng, H.D. Liu, Y.S. Guo, W.C. Liu, H.X. Tan, G.Z. Luo. (2023). Impacts of Nile Tilapia (Oreochromis niloticus) exposed to microplastics in bioflocs system, Sci. Total Environ., 901.
- [21] F. Lionetto, C. Esposito Corcione. (2021). An overview of the sorption studies of contaminants on poly(Ethylene terephthalate) microplastics in the marine environment, J. Mar. Sci. Eng., 9.
- [22] Z. Zhao, Q. Xu, L. Luo, G. Qiao, L. Wang, J. Li, C. Wang. (2021). Effect of bio-floc on water quality and the production performance of bottom and filter feeder carp fed with different protein levels in a pond polyculture system, Aquaculture, 53.
- [23] D. Deswati, S. Safni, K. Khairiyah, E. Yani, Y. Yusuf, H. Pardi. (2022). Biofloc technology: water quality (pH, temperature, DO, COD, BOD) in a flood & drain aquaponic system, Int. J. Environ. Anal. Chem., 102, 6835–6844.
- [24] L.J. Meng, X. Hu, B. Wen, Y.H. Liu, G.Z. Luo, J.Z. Gao, Z.Z. Chen. (2023). Microplastics inhibit biofloc formation and alter microbial community composition and nitrogen transformation function in aquaculture, Sci. Total Environ., 866, 161362.
- [25] J. Saha, M.A. Hossain, M. Al Mamun, M.R. Islam, M.S. Alam. (2022). Effects of carbon-nitrogen ratio manipulation on the growth performance, body composition and immunity of stinging catfish Heteropneustes fossilis in a biofloc-based culture system, Aquac. Reports, 25,
- [26] P. Makhdoumi, H. Hossini, M. Pirsaheb. (2023). A review of microplastic pollution in commercial fish for human consumption, Rev. Environ. Health, 38, 97–109.
- [27] X. Li, L. Bao, Y. Wei, W. Zhao, F. Wang, X. Liu, H. Su, R. Zhang. (2023). Occurrence, Bioaccumulation, and Risk Assessment of Microplastics in the Aquatic Environment: A Review, Water (Switzerland), 15, 1–15.
- [28] U. Padeniya, D.A. Davis, D.E. Wells, T.J. Bruce. (2022). Microbial Interactions, Growth, and Health of Aquatic Species in Biofloc Systems, Water (Switzerland), 14, 1–15.
- [29] C.D. Benavides Fernández, M.P. Guzmán Castillo, S.A. Quijano Pérez, L.V. Carvajal Rodríguez. (2022). Microbial degradation of polyethylene terephthalate: a systematic review, SN Appl. Sci., 4.
- [30] D. Deswati, R. Zein, S. Suparno, H. Pardi. (2023). Modified biofloc technology and its effects on water quality and growth of catfish, Sep. Sci. Technol., 58, 944–960.
- [31] N. Zolotova, A. Kosyreva, D. Dzhalilova, N. Fokichev, O. Makarova. (2022). Harmful effects of the microplastic pollution on animal health: a literature review, PeerJ, 10,
- [32] M.A.M. Siddique, I. Hossain, M.M.R. Sunji, T. Tahsin, T.R. Walker, M.S. Rahman. (2024). Characterization, source identification and hazard index assessment of ingested microplastics in farmed tilapia Oreochromis niloticus, Ecol. Indic., 158, 111334.