Main Article Content

Abstract

This study aimed to develop an IoT-based data logger prototype to improve data acquisition and monitoring during the sterilization process. Achieving an adequate heat sufficiency value, commonly known as the F0 value, was crucial for effective sterilization, and a thermocouple sensor was typically employed for temperature recording. The research involved designing, constructing, and testing the prototype with a focus on enhancing durability and functionality. Key improvements included adding waterproof sealants to prevent leakage, integrating connectors for enhanced connectivity, and coating the sensor's connector end to ensure long-term performance. Performance evaluation compared the improved IoT data logger with a conventional data logger in terms of heat penetration measurement. Results showed that the IoT prototype recorded heat penetration data with comparable accuracy to the conventional system, confirming its reliability for practical application. The bias for the difference was less than 10%. This innovation demonstrated the potential for improved monitoring in sterilization processes, contributing to enhanced process control and product safety.

Keywords

data logger internet of things heat sufficiency Number temperature sensors

Article Details

How to Cite
1.
Syukri D, Rini, Deden Dermawan Septina, Rudi Alfiansyah, Aurelia Amaliyah Tarumiyo, Yasmin Azzahra, et al. Pre-Study on the Development of Internet of Things-Based Prototype Data Logger for Measuring Heat Sufficiency Number. EKSAKTA [Internet]. 2025 May 28 [cited 2025 May 30];26(02):212-27. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/586

References

  1. [1] Kusnandar, F., Dafiq, H. H., Rahayu, W., & Irmawan, D. (2023). Evaluasi kecukupan panas dan pengembangan proses alternatif dalam sterilisasi komersial jamur kancing dalam kaleng. Jurnal Mutu Pangan, 10(2), 100-107.
  2. [2] Anwar, S. H., Hifdha, R. W., Hasan, H., Rohaya, S., & Martunis. (2020). Optimizing the sterilization process of canned yellowfin tuna through time and temperature combination. IOP Conference Series: Earth and Environmental Science, 425(1), 012031.
  3. [3] Kurniadi, M., Kusumaningrum, A., Nurhikmat, A., & Susanto, A. (2018). Proses termal dan pendugaan umur simpan nasi goreng dalam kemasan retort pouch. Jurnal Riset Teknologi Industri, 13(1), 9-21.
  4. [4] Gutiérrez, L., García, D., & Martínez, E. (2021). Real-time monitoring of sterilization in canned foods using IoT systems. Journal of Food Engineering, 295, 110380.
  5. [5] Wang, T., Yang, L., & Wang, Z. (2022). IoT-based temperature monitoring system for food sterilization processes. Food Control, 134, 108739.
  6. [6] Syukri, D., Rini, Jessica, A., Novelina, Hari, P. D., Fiana, R. M., Dermawan, D., et al. (2024). Standarisasi proses sterilisasi rendang pada Koperasi Wanita IKABOGA di wilayah kerja Badan Pengawas Obat dan Makanan (BPOM) Kota Padang. Warta Pengabdian Andalas, 31(4), 714-722.
  7. [7] Silaturahmi, A. Y., & Moentamaria, D. (2024). Penentuan kecukupan panas pada olahan pangan melalui uji Salmonella sp. Distilat, 10(3).
  8. [8] Basrah, A., Son, L., Ghazali, S., Huda, S., & Sabino, U. (2022). Design and implementation data logger with integrated circuit multiplexer for solar panel park. TEM Journal, 11, 427-433.
  9. [9] Dwigista, C., Decy, N., & Sabat, A. (2022). Perancangan dan implementasi printed circuit board (PCB) ramah lingkungan menggunakan conductive ink. Jurnal Power Elektronik, 11(1).
  10. [10] Guldas, M., Gonenc, S., & Gurbuz, O. (2008). A statistical approach to predict the sterilization value for canned olives. Journal of Food Process Engineering, 31(3), 299-316.
  11. [11] Kuswandono, D. P. (2019). Analisis pengaruh halangan tembok terhadap wireless access point dengan metode paired-sample test. Jurnal Gerbang, 9(2).
  12. [12] Itokhey, M., Bashir, M. S., Younus, O., Ghassemlooy, Z., Haas, H., & Karagiannidis, G., et al. (2024). Optical wireless communications: illuminating the path for Cooper's Law.
  13. [13] Novak, N., Rosina, J., Bendova, H., Kejlova, K., Vikova, A., Rucki, M., Svobodova, L., Gurlich, R., & Hajer, J. (2023). Low-cost and prototype-friendly method for biocompatible encapsulation of implantable electronics with epoxy overmolding, hermetic feedthroughs and P3HT coating. Scientific Reports.
  14. [14] Carneiro, M. R. D., Freitas, B. C., Barros, I. B. D., Campos, J. B. D., Bastos, I. N., & Costa, H. R. M. (2020). Evaluation of adhesion of epoxy resin sealant to improve the corrosion resistance of thermal sprayed coatings. Applied Adhesion Science, 7.
  15. [15] Panin, J. (2018). The effect of retort processing factors on the severity of surface impression (Master's thesis, Clemson University).
  16. [16] Jiminez, P. S., Bangar, S. P., Suffern, M., & Whiteside, W. S. (2023). Understanding retort processing: A review. Food Science & Nutrition, 12(3).
  17. [17] Badan Pengawasan Obat dan Makanan. (2019). Protokol validasi kecukupan proses panas pangan steril komersial yang disterilisasi setelah dikemas. https://pmr.pom.go.id/storage/76627/Protokol-Validasi-F0-Pangan-Steril-Komersial-yang-Disterilisasi-Setelah-Dikemas.pdf
  18. [18] Badan Pengawasan Obat dan Makanan. (2021). Peraturan Nomor 27 Tahun 2019 tentang Persyaratan Pangan Olahan Berasam Rendah Dikemas Hermetis. https://standarpangan.pom.go.id/dokumen/peraturan/202x/Peraturan_Badan_Pengawas_Obat_Dan_Makanan_Nomor_27_Tahun_2021_Tentang_Persyaratan_Pangan_Olahan_Berasam_Rendah_Dikemas_Hermetis.Pdf
  19. [19] Yan, H., Yin, J., Liu, S., Chen, Z., & Jiang, T. (2024). Failure model and multi-parameter leakage rate analysis of metal rubber seals. Advances in Mechanical Design.
  20. [20] Ikhsan, M., & Yuwaldi, A. (2014). Teknik reduksi energi pada perancangan data logger parameter matahari. Jurnal Rekayasa Elektrika, 11(1).
  21. [21] Aradwad, P., Kumar, T. V. A., Dubey, A., & Mani, I. (2021). Development of microcontroller-based data logger for real-time monitoring of drying and storage of food grains. Agricultural Engineering Today, 45(1).
  22. [22] Park, H. W., Yoo, J. S., Jung, H., & Yoon, W. B. (2019). Developing a sterilization processing and a grading system to produce a uniform quality of sterilized whole corn (Zea mays L. var. ceratina). Journal of Food Engineering, 249.
  23. [23] Bhat, M. A., Rather, M. Y., Singh, P., Hassan, S., & Hussain, N. (2025). Advances in smart food authentication for enhanced safety and quality. Trends in Food Science & Technology, 155.
  24. [24] Syukri, D., Bahar, R., Jessica, A., Novelina, N., Dini Hari, P., Meuthia Fiana, R. M., et al. (2024). Technical assistance in determining the heat sufficiency number (F0) in the sterilization process of packaged rendang for Rendang business actors IKABOGA in Padang City. Andalasian International Journal of Social Entrepreneurship and Development, 4(2), 14-19.
  25. [25] Waworundeng, J. (2024). IoT-based environmental monitoring with data analysis of temperature, humidity, and air quality. CogITo Smart Journal, 10(1), 271-284.
  26. [26] Katie, B., & Biancha. (2024). Internet of Things (IoT) for environmental monitoring. International Journal of Computing and Engineering, 6, 29-42.
  27. [27] Cecchi, R., Catania, A., Sbrana, C., Macucci, M., Strangio, S., & Iannaccone, G. (2024). Data loggers for high-temperature industrial environments. IEEE Access, 12, 180726-180737.
  28. [28] Saurabh, K., Tripathi, M., & Mahapatra, S. (2023). IoT resources and their practical application, a comprehensive study. International Journal on Recent and Innovation Trends in Computing and Communication, 11(10).
  29. [29] Jan, F., Min Allah, N., Saeed, S., Iqbal, S., & Ahmed, R. (2022). IoT-based solutions to monitor water level, leakage, and motor control for smart water tanks. Water, 14, 309.
  30. [30] Nalakurthi, N. V. S. R., Abimbola, I., Ahmed, T., Anton, I., Riaz, K., Ibrahim, Q., Banerjee, A., Tiwari, A., & Gharbia, S. (2024). Challenges and opportunities in calibrating low-cost environmental sensors. Sensors, 24(11), 3650.