Main Article Content
Abstract
Photovoltaic cells are devices capable of converting light energy into electrical energy through the photovoltaic effect, where absorbed photons in semiconductor materials generate an electric current. Ideally, photovoltaic cells should offer high efficiency, long-term stability, and low production costs under various lighting conditions. In reality, most conventional photovoltaic technologies, such as crystalline silicon, still suffer from high production costs and performance degradation, especially under long-term exposure and high humidity. As an alternative, copper-aluminum (Cu-Al) based photovoltaic cells with sodium chloride (NaCl) gel electrolyte have been developed, providing reasonable energy conversion efficiency, low material costs, and simple fabrication. The NaCl gel enhances ionic conductivity and system stability, while calcination of Cu into CuO improves the semiconductor properties of the active layer. The urgency of this research lies in the need for renewable energy systems that are affordable, easy to produce, and durable, particularly for remote areas or off-grid applications. Therefore, this article aims to provide a comprehensive review of the optimization of Cu-Al photovoltaic cells with NaCl gel electrolyte under neon lamp illumination, highlighting technical challenges, performance enhancement mechanisms, and future development prospects. This article includes references from publications between 2019 and 2025.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Maka, A. O., & Alabid, J. M. (2022). Solar energy technology and its roles in sustainable development. Clean Energy, 6(3), 476-483.
- [2] Monama, G. R., Ramohlola, K. E., Iwuoha, E. I., & Modibane, K. D. (2022). Progress on perovskite materials for energy application. Results in Chemistry, 4, 100321.
- [3] Cattin, L., El Mahlali, A., Cherif, M. A., Touihri, S., El Jouad, Z., Mouchaal, Y., ... & Bernède, J. C. (2020). New dielectric/metal/dielectric electrode for organic photovoltaic cells using Cu: Al alloy as metal. Journal of Alloys and Compounds, 819, 152974.
- [4] Moreno Sierra, A. A. (2024). Technology roadmap of lightweight materials in the energy sector (wind and solar): a comprehensive analysis and strategy for future development (Master's thesis, Universitat Politècnica de Catalunya).
- [5] Saji, V. S. (2023). Corrosion and materials degradation in electrochemical energy storage and conversion devices. ChemElectroChem, 10(11), e202300136.
- [6] Jiang, M., Fu, C., Meng, P., Ren, J., Wang, J., Bu, J., ... & Sun, B. (2022). Challenges and strategies of low‐cost aluminum anodes for high‐performance Al‐based batteries. Advanced Materials, 34(2), 2102026.
- [7] Wei, W., Xu, J., Chen, W., Mi, L., & Zhang, J. (2022). A review of sodium chloride-based electrolytes and materials for electrochemical energy technology. Journal of Materials Chemistry A, 10(6), 2637-2671.
- [8] Zheng, J., Li, W., Liu, X., Zhang, J., Feng, X., & Chen, W. (2023). Progress in gel polymer electrolytes for sodium‐ion batteries. Energy & Environmental Materials, 6(4), e12422.
- [9] Wang, H., Xue, K., Su, B., & Yu, D. Y. (2021). Achieving reversible Cu–Al batteries by reducing self-discharge and side reactions. Electrochimica Acta, 388, 138595.
- [10] Hu, T., Wu, Q., Wang, C., Chen, J., Su, F., Chen, Z., ... & Zhao, J. (2024). Enhancing the electrochemical performance of Na metal anodes via local eutectic melting in porous Al-Cu alloy hosts. Nano Research, 17(7), 6111-6118.
- [11] Savva, A., Papadas, I. T., Tsikritzis, D., Ioakeimidis, A., Galatopoulos, F., Kapnisis, K., Fuhrer, R., Hartmeier, B., Oszajca, M. F., Luechinger, N. A., Kennou, S., Armatas, G. S., & Choulis, S. A. (2019). Inverted perovskite photovoltaics using flame spray pyrolysis solution based CuAlO₂/CuO hole-selective. ACS Applied Energy Materials, 2(3), 2276–2287.
- [12] Saklin, M. K., Das, R. C., Akther, Y., Dewanjee, S., Das, S. K., Monir, T. S. B., & Mondal, S. (2020). Efficiency of aluminium and copper coated aluminium electrode in hydrogen fuel generation from rain water. Energy and Power Engineering, 12(6), 9 pages.
- [13] Fernández, A. G., & Cabeza, L. F. (2020). Cathodic protection using aluminum metal in chloride molten salts as thermal energy storage material in concentrating solar power plants. Applied Sciences, 10(11), 3724.
- [14] Okumura, R., Oku, T., Suzuki, A., Okita, M., Fukunishi, S., Tachikawa, T., & Hasegawa, T. (2023). Electronic structures and photovoltaic properties of copper-, sodium- and ethylammonium-added CH₃NH₃PbI₃ perovskite compound. Engineering Proceedings, 31(1), 29.
- [15] Shawn, Y. H., Ghafoor, B. N., & Farhad, A. H. (2023). Copper oxide (Cu₂O) sheet based solar cell. Journal of University of Babylon for Pure and Applied Sciences, 31(4), 217–224.
- [16] Tao, Q., Han, C., Jing, Q., & Wang, G. (2024). Sustainable recovery of silver and copper photovoltaic metals from waste-conductive silver pastes using thiosulfate extraction and ultraviolet photolysis. Metals, 14(6), 730.
- [17] Hill, R. C., Gross, M. S., Percival, S. J., Peretti, A. S., Small, L. J., Spoerke, E. D., & Cheng, Y.-T. (2024). Molten sodium batteries: Advances in chemistries, electrolytes, and interfaces. Frontiers in Batteries and Electrochemistry, 3, Article 1369305.
- [18] Sitanggang, R. B., Nur’aini, S., Susanto, S., Widiyastuti, W., & Setyawan, H. (2024). The enhancement discharge performance by zinc-coated aluminum anode for aluminum–air battery in sodium chloride solution. Applied Sciences, 14(14), 6263.
- [19] Zhang, C., Zhang, J., Ma, X., & Feng, Q. (2021). Semiconductor photovoltaic cells. Berlin: Springer.
- [20] Yanni, F., & Zainul, R. (2025). Optimization of Photovoltaic Cells Using Copper-Aluminium Electrodes and Magnesium Sulfate-Based Gel Electrolytes. EKSAKTA: Berkala Ilmiah Bidang MIPA, 26(02), 228-238.
- [21] Siavash Moakhar, R., Hosseini‐Hosseinabad, S. M., Masudy‐Panah, S., Seza, A., Jalali, M., Fallah‐Arani, H., ... & Saliba, M. (2021). Photoelectrochemical water‐splitting using CuO‐based electrodes for hydrogen production: a review. Advanced Materials, 33(33), 2007285.
- [22] Aziz, S. B., Salih, I. L., Rasul, H. H., Babakr, K. A., Qader, I. N., Ibrahim, P. A., ... & Hussein, S. M. (2025). Enhancing ionic conductivity in MC: NaCl polymer electrolytes through glycerol optimization: structural and electrochemical perspectives. Polymer Bulletin, 1-20.
- [23] Fan, X., Zhong, C., Liu, J., Ding, J., Deng, Y., Han, X., ... & Zhang, J. (2022). Opportunities of flexible and portable electrochemical devices for energy storage: expanding the spotlight onto semi-solid/solid electrolytes. Chemical Reviews, 122(23), 17155-17239.
- [24] Liu, C. P., Chang, S. J., Liu, Y. F., & Su, J. (2020). Corrosion-induced degradation and its mechanism study of Cu–Al interface for Cu-wire bonding under HAST conditions. Journal of Alloys and Compounds, 825, 154046.
- [25] Kim, J., Rabelo, M., Padi, S. P., Yousuf, H., Cho, E. C., & Yi, J. (2021). A review of the degradation of photovoltaic modules for life expectancy. Energies, 14(14), 4278.
- [26] Tembo, P. M., & Subramanian, V. (2023). Current trends in silicon-based photovoltaic recycling: A technology, assessment, and policy review. Solar Energy, 259, 137-150. for electrochemical energy technology. Journal of Materials Chemistry A, 10(6), 2637-2671.
- [27] Fazal, M. A., & Rubaiee, S. (2023). Progress of PV cell technology: Feasibility of building materials, cost, performance, and stability. Solar Energy, 258, 203-219.
- [28] Al-Ezzi, A. S., & Ansari, M. N. M. (2022). Photovoltaic solar cells: A review. Applied System Innovation, 5(4), 67.
- [29] Al-Fa'ouri, A. M., Lafi, O. A., Abu-Safe, H. H., & Abu-Kharma, M. (2023). Investigation of optical and electrical properties of copper oxide-polyvinyl alcohol nanocomposites for solar cell applications. Arabian Journal of Chemistry, 16(4), 104535.
- [30] El-Zahhar, A. A., Idris, A. M., Fawy, K. F., & Arshad, M. (2021). SEM, SEM-EDX, µ-ATR-FTIR and XRD for urban street dust characterisation. International journal of environmental analytical chemistry, 101(7), 988-1006.
- [31] Patel, M., Mishra, S., Verma, R., & Shikha, D. (2022). Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials, 2(1), 1.
- [32] Alghamdi, H. A. (2022). Structural, morphological, optical, and electrical characteristics of polyethylene oxide/chitosan-copper oxide nanoparticles for optoelectronic applications. Optical Materials, 134, 113101.
- [33] El-Shafai, N. M., Abdelfatah, M., El-Mehasseb, I. M., Ramadan, M. S., Ibrahim, M. M., El-Shaer, A., ... & Masoud, M. S. (2021). Enhancement of electrochemical properties and photocurrent of copper oxide by heterojunction process as a novel hybrid nanocomposite for photocatalytic anti-fouling and solar cell applications. Separation and Purification Technology, 267, 118631.
- [34] Amalraj, S., & Michael, P. A. (2019). Synthesis and characterization of Al2O3 and CuO nanoparticles into nanofluids for solar panel applications. Results in Physics, 15, 102797.
- [35] Farhana, N. K., Omar, F. S., Mohamad Saidi, N., Ling, G. Z., Bashir, S., Subramaniam, R., ... & Al-Sehemi, A. G. (2022). Modification of DSSC based on polymer composite gel electrolyte with copper oxide nanochain by shape effect. Polymers, 14(16), 3426.
- [36] Lah, N. A. C. (2023). Tunable functionality of pure nano Cu-and Cu-based oxide flexible conductive thin film with superior surface modification. Surfaces and Interfaces, 38, 102819.
- [37] Kumar, V., Kaphle, A., Rathnasekara, R., Neupane, G. R., & Hari, P. (2024). Role of Al doping in morphology and interface of Al-doped ZnO/CuO film for device performance of thin film-based heterojunction solar cells. Hybrid Advances, 5, 100148.
- [38] Zabed, H. M., Islam, J., Chowdhury, F. I., Zhao, M., Awasthi, M. K., Nizami, A. S., ... & Qi, X. (2022). Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation. Renewable and Sustainable Energy Reviews, 168, 112887.
- [39] Farhana, N. K., Omar, F. S., Mohamad Saidi, N., Ling, G. Z., Bashir, S., Subramaniam, R., ... & Al-Sehemi, A. G. (2022). Modification of DSSC based on polymer composite gel electrolyte with copper oxide nanochain by shape effect. Polymers, 14(16), 3426.
- [40] Mobarak, M. B., Hossain, M. S., Chowdhury, F., & Ahmed, S. (2022). Synthesis and characterization of CuO nanoparticles utilizing waste fish scale and exploitation of XRD peak profile analysis for approximating the structural parameters. Arabian Journal of Chemistry, 15(10), 104117.
- [41] Sawicka-Chudy, P., Sibiński, M., Rybak-Wilusz, E., Cholewa, M., Wisz, G., & Yavorskyi, R. (2020). Review of the development of copper oxides with titanium dioxide thin-film solar cells. AIP Advances, 10(1).
- [42] Luceño-Sánchez, J. A., Díez-Pascual, A. M., & Peña Capilla, R. (2019). Materials for photovoltaics: State of art and recent developments. International journal of molecular sciences, 20(4), 976.
- [43] Yasmeen, S., Gill, Y. Q., Nazar, R., Mehmood, U., Iqbal, F., Qaswar, H., & Ahmed, Z. (2023). Quasi-solid polyaniline/poly (vinyl pyrrolidone) blend electrolytes for dye-sensitized solar cells. Materials Chemistry and Physics, 305, 128025.
- [44] Zhang, S., Liu, Y., Fan, Q., Zhang, C., Zhou, T., Kalantar-Zadeh, K., & Guo, Z. (2021). Liquid metal batteries for future energy storage. Energy & Environmental Science, 14(8), 4177-4202.