Main Article Content

Abstract

Metabolic syndrome (MetS) is linked to hepatic endoplasmic reticulum (ER) stress. This study evaluated 6-gingerol’s potential to alleviate ER stress in a high-fat high-fructose (HFHF)-induced MetS rat model. Male Sprague-Dawley rats (8 weeks, 180–220 g) were assigned to five groups: Normal, HFHF, and HFHF with 6-gingerol (50, 100, or 200 mg/kg). The Normal group received a standard diet, while others had HFHF for 16 weeks. From Week 8, intervention groups received 6-gingerol daily. Except for Normal, other groups also received Streptozotocin (22mg/kg, i.p.) at Week 8. At Week 16, rats were euthanized, and liver tissues collected to assess ER stress markers (GRP78, IRE1, TRAF2, PERK, CHOP) via qPCR and apoptotic markers (Bax, Bcl-2) via ELISA. 6-Gingerol slightly reduced liver ER stress markers, including GRP78 (P=0.392), CHOP (P=0.798), IRE1 (P=0.419), TRAF2 (P=0.470), and PERK (P=0.357), but these changes were not significant. Similarly, apoptotic markers Bax and Bcl-2 showed no significant differences, though the Bax/Bcl-2 ratio decreased (P=0.186). These results indicate that 6-gingerol had only a slight effect on ER stress and apoptosis within the parameters of this experiment.

Keywords

6-Gingerol Endoplasmic Reticulum Stress High-Fat High-Fructose Diet Metabolic Syndrome Unfolded Protein Response

Article Details

How to Cite
1.
Ahmad N, Syarifah Dewi, Soetikno V. 6-Gingerol Slightly Reduces Hepatic Endoplasmic Reticulum Stress Markers in Rats with High-Fat, High-Fructose Diet-Induced Metabolic Syndrome. EKSAKTA [Internet]. 2025Feb.17 [cited 2025Feb.22];26(01):101-12. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/581

References

  1. Lachkar, F., Papaioannou, A., Ferré, P., & Foufelle, F. (2020). Stress du réticulum endoplasmique et stéatopathies métaboliques. Biologie Aujourd’hui, 214(1-2), 15-23.
  2. Noubiap, J. J., Nansseu, J. R., Lontchi-Yimagou, E., Nkeck, J. R., Nyaga, U. F., Ngouo, A. T., ... & Bigna, J. J. (2022). Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes research and clinical practice, 188, 109924.
  3. Fahed, G., Aoun, L., Bou Zerdan, M., Allam, S., Bou Zerdan, M., Bouferraa, Y., & Assi, H. I. (2022). Metabolic syndrome: updates on pathophysiology and management in 2021. International journal of molecular sciences, 23(2), 786.
  4. Rinaldi, L., Pafundi, P. C., Galiero, R., Caturano, A., Morone, M. V., Silvestri, C., ... & Sasso, F. C. (2021). Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants, 10(2), 270.
  5. Paik, J. M., Henry, L., Younossi, Y., Ong, J., Alqahtani, S., & Younossi, Z. M. (2023). The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatology communications, 7(10), e0251.
  6. Radu, F., Potcovaru, C. G., Salmen, T., Filip, P. V., Pop, C., & Fierbințeanu-Braticievici, C. (2023). The link between NAFLD and metabolic syndrome. Diagnostics, 13(4), 614.
  7. Luo, Y., Jiao, Q., & Chen, Y. (2022). Targeting endoplasmic reticulum stress—the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opinion on Therapeutic Targets, 26(12), 1073-1085.
  8. Peng, Y., Gu, T., Zhong, T., Xiao, Y., & Sun, Q. (2022). Endoplasmic reticulum stress in metabolic disorders: opposite roles of phytochemicals and food contaminants. Current Opinion in Food Science, 48, 100913.
  9. Lei, N., Song, H., Zeng, L., Ji, S., Meng, X., Zhu, X., ... & Mu, J. (2023). Persistent Lipid Accumulation Leads to Persistent Exacerbation of Endoplasmic Reticulum Stress and Inflammation in Progressive NASH via the IRE1α/TRAF2 Complex. Molecules, 28(7), 3185.
  10. Xiao, M. C., Jiang, N., Chen, L. L., Liu, F., Liu, S. Q., Ding, C. H., ... & Xie, W. F. (2024). TRIB3–TRIM8 complex drives NAFLD progression by regulating HNF4α stability. Journal of Hepatology, 80(5), 778-791.
  11. Read, A., & Schröder, M. (2021). The unfolded protein response: an overview. Biology, 10(5), 384.
  12. Chen, X., Shi, C., He, M., Xiong, S., & Xia, X. (2023). Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal transduction and targeted therapy, 8(1), 352.
  13. Ajoolabady, A., Kaplowitz, N., Lebeaupin, C., Kroemer, G., Kaufman, R. J., Malhi, H., & Ren, J. (2023). Endoplasmic reticulum stress in liver diseases. Hepatology, 77(2), 619-639.
  14. Yun, Y. R., & Lee, J. E. (2022). Alliin, capsaicin, and gingerol attenuate endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice. Journal of Functional Foods, 95, 105186.
  15. Liu, Y., Li, D., Wang, S., Peng, Z., Tan, Q., He, Q., & Wang, J. (2023). 6-Gingerol ameliorates hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice through activating LKB1/AMPK signaling. International Journal of Molecular Sciences, 24(7), 6285.
  16. Hong, M. K., Hu, L. L., Zhang, Y. X., Xu, Y. L., Liu, X. Y., He, P. K., & Jia, Y. H. (2020). 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway. International Immunopharmacology, 80, 106196.
  17. Peng, Z., Zeng, Y., Tan, Q., He, Q., Wang, S., & Wang, J. (2024). 6-Gingerol alleviates ectopic lipid deposition in skeletal muscle by regulating CD36 translocation and mitochondrial function. Biochemical and Biophysical Research Communications, 708, 149786.
  18. Alipour, A., Baradaran Rahimi, V., & Askari, V. R. (2022). Promising influences of gingerols against metabolic syndrome: A mechanistic review. BioFactors, 48(5), 993-1004.
  19. Gunawan, S., Munika, E., Wulandari, E. T., Ferdinal, F., Purwaningsih, E. H., Wuyung, P. E., ... & Soetikno, V. (2023). 6-gingerol ameliorates weight gain and insulin resistance in metabolic syndrome rats by regulating adipocytokines. Saudi Pharmaceutical Journal, 31(3), 351-358.
  20. Benny, M., Shylaja, M. R., Antony, B., Gupta, N. K., Mary, R., Anto, A., & Jacob, S. (2021). Acute and sub-acute toxicity studies with ginger extract in rats. Int. J. Pharm. Sci. Res, 12(2799), 2799-09.
  21. Rohman, M. S., Lukitasari, M., Nugroho, D. A., Nashi, W., Nugraheini, N. I. P., & Sardjono, T. W. (2017). Development of an experimental model of metabolic syndrome in sprague dawley rat. Research Journal of Life Science, 4(1), 76-86.
  22. Oliveira-Cordeiro, B., Fernandes-DA-Silva, A., Silva-Veiga, F. M., Miranda, C. S., Martins, F. F., & Souza-Mello, V. (2023). Long-term hepatic damage in high-fructose-fed C57BL/6 mice: hepatic fibrogenesis, endoplasmic reticulum stress markers, and fibrosis. Anais da Academia Brasileira de Ciências, 95(suppl 2), e20220784.
  23. Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., & Balasubramanyam, M. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and cellular biochemistry, 423, 93-104.
  24. Cho, I. J., Oh, D. H., Yoo, J., Hwang, Y. C., Ahn, K. J., Chung, H. Y., ... & Jeong, I. K. (2021). Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific reports, 11(1), 9894.
  25. Puri, P., Mirshahi, F., Cheung, O., Natarajan, R., Maher, J. W., Kellum, J. M., & Sanyal, A. J. (2008). Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology, 134(2), 568-576.
  26. Gelen, V., Sengul, E., Yildirim, S., & Cinar, İ. (2023). The role of GRP78/ATF6/IRE1 and caspase-3/Bax/Bcl2 signaling pathways in the protective effects of gallic acid against cadmium-induced liver damage in rats. Iranian Journal of Basic Medical Sciences, 26(11), 1326.
  27. Fatemi, F., Vaezi, G., Sharafi, S., & Rahbarian, R. (2024). 6‐gingerol effect on rat liver following exposure to gold nanoparticles: From histopathologic findings to inflammatory and oxidative stress biomarkers. Journal of Biochemical and Molecular Toxicology, 38(9), e23793.
  28. Hu, R., Zhou, P., Peng, Y. B., Xu, X., Ma, J., Liu, Q., ... & Li, P. (2012). 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PloS one, 7(6), e39664.
  29. Taylor, S. C., Rosselli-Murai, L. K., Crobeddu, B., & Plante, I. (2022). A critical path to producing high quality, reproducible data from quantitative western blot experiments. Scientific Reports, 12(1), 17599.
  30. Huang, Y. T., van der Hoorn, D., Ledahawsky, L. M., Motyl, A. A., Jordan, C. Y., Gillingwater, T. H., & Groen, E. J. (2019). Robust comparison of protein levels across tissues and throughout development using standardized quantitative western blotting. Journal of Visualized Experiments (JoVE).
  31. Müller, H. K. (2022). A Guide to Analysis of Relative Synaptic Protein Abundance by Quantitative Fluorescent Western Blotting. In Synaptic Vesicles: Methods and Protocols (pp. 89-98). New York, NY: Springer US.