Main Article Content
Abstract
Metabolic syndrome (MetS) is linked to hepatic endoplasmic reticulum (ER) stress. This study evaluated 6-gingerol’s potential to alleviate ER stress in a high-fat high-fructose (HFHF)-induced MetS rat model. Male Sprague-Dawley rats (8 weeks, 180–220 g) were assigned to five groups: Normal, HFHF, and HFHF with 6-gingerol (50, 100, or 200 mg/kg). The Normal group received a standard diet, while others had HFHF for 16 weeks. From Week 8, intervention groups received 6-gingerol daily. Except for Normal, other groups also received Streptozotocin (22mg/kg, i.p.) at Week 8. At Week 16, rats were euthanized, and liver tissues collected to assess ER stress markers (GRP78, IRE1, TRAF2, PERK, CHOP) via qPCR and apoptotic markers (Bax, Bcl-2) via ELISA. 6-Gingerol slightly reduced liver ER stress markers, including GRP78 (P=0.392), CHOP (P=0.798), IRE1 (P=0.419), TRAF2 (P=0.470), and PERK (P=0.357), but these changes were not significant. Similarly, apoptotic markers Bax and Bcl-2 showed no significant differences, though the Bax/Bcl-2 ratio decreased (P=0.186). These results indicate that 6-gingerol had only a slight effect on ER stress and apoptosis within the parameters of this experiment.
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- Lachkar, F., Papaioannou, A., Ferré, P., & Foufelle, F. (2020). Stress du réticulum endoplasmique et stéatopathies métaboliques. Biologie Aujourd’hui, 214(1-2), 15-23.
- Noubiap, J. J., Nansseu, J. R., Lontchi-Yimagou, E., Nkeck, J. R., Nyaga, U. F., Ngouo, A. T., ... & Bigna, J. J. (2022). Geographic distribution of metabolic syndrome and its components in the general adult population: A meta-analysis of global data from 28 million individuals. Diabetes research and clinical practice, 188, 109924.
- Fahed, G., Aoun, L., Bou Zerdan, M., Allam, S., Bou Zerdan, M., Bouferraa, Y., & Assi, H. I. (2022). Metabolic syndrome: updates on pathophysiology and management in 2021. International journal of molecular sciences, 23(2), 786.
- Rinaldi, L., Pafundi, P. C., Galiero, R., Caturano, A., Morone, M. V., Silvestri, C., ... & Sasso, F. C. (2021). Mechanisms of non-alcoholic fatty liver disease in the metabolic syndrome. A narrative review. Antioxidants, 10(2), 270.
- Paik, J. M., Henry, L., Younossi, Y., Ong, J., Alqahtani, S., & Younossi, Z. M. (2023). The burden of nonalcoholic fatty liver disease (NAFLD) is rapidly growing in every region of the world from 1990 to 2019. Hepatology communications, 7(10), e0251.
- Radu, F., Potcovaru, C. G., Salmen, T., Filip, P. V., Pop, C., & Fierbințeanu-Braticievici, C. (2023). The link between NAFLD and metabolic syndrome. Diagnostics, 13(4), 614.
- Luo, Y., Jiao, Q., & Chen, Y. (2022). Targeting endoplasmic reticulum stress—the responder to lipotoxicity and modulator of non-alcoholic fatty liver diseases. Expert Opinion on Therapeutic Targets, 26(12), 1073-1085.
- Peng, Y., Gu, T., Zhong, T., Xiao, Y., & Sun, Q. (2022). Endoplasmic reticulum stress in metabolic disorders: opposite roles of phytochemicals and food contaminants. Current Opinion in Food Science, 48, 100913.
- Lei, N., Song, H., Zeng, L., Ji, S., Meng, X., Zhu, X., ... & Mu, J. (2023). Persistent Lipid Accumulation Leads to Persistent Exacerbation of Endoplasmic Reticulum Stress and Inflammation in Progressive NASH via the IRE1α/TRAF2 Complex. Molecules, 28(7), 3185.
- Xiao, M. C., Jiang, N., Chen, L. L., Liu, F., Liu, S. Q., Ding, C. H., ... & Xie, W. F. (2024). TRIB3–TRIM8 complex drives NAFLD progression by regulating HNF4α stability. Journal of Hepatology, 80(5), 778-791.
- Read, A., & Schröder, M. (2021). The unfolded protein response: an overview. Biology, 10(5), 384.
- Chen, X., Shi, C., He, M., Xiong, S., & Xia, X. (2023). Endoplasmic reticulum stress: molecular mechanism and therapeutic targets. Signal transduction and targeted therapy, 8(1), 352.
- Ajoolabady, A., Kaplowitz, N., Lebeaupin, C., Kroemer, G., Kaufman, R. J., Malhi, H., & Ren, J. (2023). Endoplasmic reticulum stress in liver diseases. Hepatology, 77(2), 619-639.
- Yun, Y. R., & Lee, J. E. (2022). Alliin, capsaicin, and gingerol attenuate endoplasmic reticulum stress-induced hepatic steatosis in HepG2 cells and C57BL/6N mice. Journal of Functional Foods, 95, 105186.
- Liu, Y., Li, D., Wang, S., Peng, Z., Tan, Q., He, Q., & Wang, J. (2023). 6-Gingerol ameliorates hepatic steatosis, inflammation and oxidative stress in high-fat diet-fed mice through activating LKB1/AMPK signaling. International Journal of Molecular Sciences, 24(7), 6285.
- Hong, M. K., Hu, L. L., Zhang, Y. X., Xu, Y. L., Liu, X. Y., He, P. K., & Jia, Y. H. (2020). 6-Gingerol ameliorates sepsis-induced liver injury through the Nrf2 pathway. International Immunopharmacology, 80, 106196.
- Peng, Z., Zeng, Y., Tan, Q., He, Q., Wang, S., & Wang, J. (2024). 6-Gingerol alleviates ectopic lipid deposition in skeletal muscle by regulating CD36 translocation and mitochondrial function. Biochemical and Biophysical Research Communications, 708, 149786.
- Alipour, A., Baradaran Rahimi, V., & Askari, V. R. (2022). Promising influences of gingerols against metabolic syndrome: A mechanistic review. BioFactors, 48(5), 993-1004.
- Gunawan, S., Munika, E., Wulandari, E. T., Ferdinal, F., Purwaningsih, E. H., Wuyung, P. E., ... & Soetikno, V. (2023). 6-gingerol ameliorates weight gain and insulin resistance in metabolic syndrome rats by regulating adipocytokines. Saudi Pharmaceutical Journal, 31(3), 351-358.
- Benny, M., Shylaja, M. R., Antony, B., Gupta, N. K., Mary, R., Anto, A., & Jacob, S. (2021). Acute and sub-acute toxicity studies with ginger extract in rats. Int. J. Pharm. Sci. Res, 12(2799), 2799-09.
- Rohman, M. S., Lukitasari, M., Nugroho, D. A., Nashi, W., Nugraheini, N. I. P., & Sardjono, T. W. (2017). Development of an experimental model of metabolic syndrome in sprague dawley rat. Research Journal of Life Science, 4(1), 76-86.
- Oliveira-Cordeiro, B., Fernandes-DA-Silva, A., Silva-Veiga, F. M., Miranda, C. S., Martins, F. F., & Souza-Mello, V. (2023). Long-term hepatic damage in high-fructose-fed C57BL/6 mice: hepatic fibrogenesis, endoplasmic reticulum stress markers, and fibrosis. Anais da Academia Brasileira de Ciências, 95(suppl 2), e20220784.
- Balakumar, M., Raji, L., Prabhu, D., Sathishkumar, C., Prabu, P., Mohan, V., & Balasubramanyam, M. (2016). High-fructose diet is as detrimental as high-fat diet in the induction of insulin resistance and diabetes mediated by hepatic/pancreatic endoplasmic reticulum (ER) stress. Molecular and cellular biochemistry, 423, 93-104.
- Cho, I. J., Oh, D. H., Yoo, J., Hwang, Y. C., Ahn, K. J., Chung, H. Y., ... & Jeong, I. K. (2021). Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific reports, 11(1), 9894.
- Puri, P., Mirshahi, F., Cheung, O., Natarajan, R., Maher, J. W., Kellum, J. M., & Sanyal, A. J. (2008). Activation and dysregulation of the unfolded protein response in nonalcoholic fatty liver disease. Gastroenterology, 134(2), 568-576.
- Gelen, V., Sengul, E., Yildirim, S., & Cinar, İ. (2023). The role of GRP78/ATF6/IRE1 and caspase-3/Bax/Bcl2 signaling pathways in the protective effects of gallic acid against cadmium-induced liver damage in rats. Iranian Journal of Basic Medical Sciences, 26(11), 1326.
- Fatemi, F., Vaezi, G., Sharafi, S., & Rahbarian, R. (2024). 6‐gingerol effect on rat liver following exposure to gold nanoparticles: From histopathologic findings to inflammatory and oxidative stress biomarkers. Journal of Biochemical and Molecular Toxicology, 38(9), e23793.
- Hu, R., Zhou, P., Peng, Y. B., Xu, X., Ma, J., Liu, Q., ... & Li, P. (2012). 6-Shogaol induces apoptosis in human hepatocellular carcinoma cells and exhibits anti-tumor activity in vivo through endoplasmic reticulum stress. PloS one, 7(6), e39664.
- Taylor, S. C., Rosselli-Murai, L. K., Crobeddu, B., & Plante, I. (2022). A critical path to producing high quality, reproducible data from quantitative western blot experiments. Scientific Reports, 12(1), 17599.
- Huang, Y. T., van der Hoorn, D., Ledahawsky, L. M., Motyl, A. A., Jordan, C. Y., Gillingwater, T. H., & Groen, E. J. (2019). Robust comparison of protein levels across tissues and throughout development using standardized quantitative western blotting. Journal of Visualized Experiments (JoVE).
- Müller, H. K. (2022). A Guide to Analysis of Relative Synaptic Protein Abundance by Quantitative Fluorescent Western Blotting. In Synaptic Vesicles: Methods and Protocols (pp. 89-98). New York, NY: Springer US.