Main Article Content

Abstract

Nipah virus (NiV) is a type of virus that can make people and many animals very sick.  It can cause serious breathing problems and brains welling.  Because of how dangerous and deadly it is, the World Health Organization (WHO) sees NiV as a global healthrisk.  It needs to be handled in special labs that have the highest safety measures, called Biosafety Level-4 (BSL-4) facilities.  Rightnow, there isn't a good vaccine or treatment available for NiV.  It could be a health risk for Indonesia since it has been found in nearby countries. Indonesia doesn't have a BSL-4 lab yet. So, we need a way to evaluation NiV vaccine that can be done in a BSL-2 lab.  The NiV pseudovirus (PV NiV) has special proteins that help it attach to and enter mammal cells.  It is made using a system based on HIV and includes a signal detector.  This setup can help create tests to measure how well antibodies work against NiV.  It can also be used to monitor infections, check community immunity, develop NiV vaccines, and research new treatments to fight NiV infections.

Article Details

How to Cite
1.
Anna SN, Fera Ibrahim. Application of Nipah Pseudovirus System for Development of Antibody Neutralization Assay. EKSAKTA [Internet]. 2025Mar.30 [cited 2025Apr.18];26(01):114-27. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/569

References

  1. Bae, S. E., Kim, S. S., Moon, S. T., Cho, Y. D., Lee, H., Lee, J. Y., ... & Kim, Y. B. (2019). Construction of the safe neutralizing assay system using pseudotyped Nipah virus and G protein-specific monoclonal antibody. Biochemical and biophysical research communications, 513(4), 781-786.
  2. Jain, S., Lo, M. K., Kainulainen, M. H., Welch, S. R., Spengler, J. R., Satter, S. M., ... & Albariño, C. G. (2023). Development of a neutralization assay using a vesicular stomatitis virus expressing Nipah virus glycoprotein and a fluorescent protein. Virology, 587, 109858.
  3. Nie, J., Liu, L., Wang, Q., Chen, R., Ning, T., Liu, Q., ... & Wang, Y. (2019). Nipah pseudovirus system enables evaluation of vaccines in vitro and in vivo using non-BSL-4 facilities. Emerging microbes & infections, 8(1), 272-281.
  4. Eichler, M., Aksi, E., Pfeilschifter, J., & Imre, G. (2021). Application of pseudotyped virus particles to monitor Ebola virus and SARS-CoV-2 viral entry in human cell lines. STAR protocols, 2(4), 100818.
  5. Ortega, V., Zamora, J. L. R., Monreal, I. A., Hoffman, D. T., Ezzatpour, S., Johnston, G. P., ... & Aguilar, H. C. (2022). Novel roles of the Nipah virus attachment glycoprotein and its mobility in early and late membrane fusion steps. MBio, 13(3), e03222-21.
  6. Wang, Z. (2022). Architecture and antigenicity of the Nipah virus attachment glycoprotein. Biophysical Journal, 121(3), 29a.
  7. Whitmer, S. L., Lo, M. K., Sazzad, H. M., Zufan, S., Gurley, E. S., Sultana, S., ... & Klena, J. D. (2021). Inference of Nipah virus evolution, 1999–2015. Virus Evolution, 7(1), veaa062.
  8. Luo, X., Wang, C., Huang, Y., Cong, S., Tan, J., Hou, W., ... & Zheng, L. (2023). Establishment of a neutralization assay for Nipah virus using a high-titer pseudovirus system. Biotechnology Letters, 45(4), 489-498.
  9. Suzuki, K., Huits, R., Phadungsombat, J., Tuekprakhon, A., Nakayama, E. E., Van Den Berg, R., ... & Shioda, T. (2020). Promising application of monoclonal antibody against chikungunya virus E1-antigen across genotypes in immunochromatographic rapid diagnostic tests. Virology Journal, 17, 1-11.
  10. Xiang, Q., Li, L., Wu, J., Tian, M., & Fu, Y. (2022). Application of pseudovirus system in the development of vaccine, antiviral-drugs, and neutralizing antibodies. Microbiological Research, 258, 126993.
  11. Kretschmer, M., Kadlubowska, P., Hoffmann, D., Schwalbe, B., Auerswald, H., & Schreiber, M. (2020). Zikavirus pr ME envelope pseudotyped human immunodeficiency virus type-1 as a novel tool for glioblastoma-directed virotherapy. Cancers, 12(4), 1000.
  12. Hu, J., Gao, Q., He, C., Huang, A., Tang, N., & Wang, K. (2020). Development of cell-based pseudovirus entry assay to identify potential viral entry inhibitors and neutralizing antibodies against SARS-CoV-2. Genes & diseases, 7(4), 551-557.
  13. Chen, M., & Zhang, X. E. (2021). Construction and applications of SARS-CoV-2 pseudoviruses: a mini review. International journal of biological sciences, 17(6), 1574.
  14. Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., ... & Hamlyn, J. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. The Lancet, 396(10249), 467-478.
  15. US Food and Drug Administration. (2020). FDA Approves Treatment for Ebola Virus. Available on:< https://www. fda. gov/drugs/drug-safety-and-availability/fda-approves-treatment-ebola-virus>(accessed 24 January 2021).
  16. Condor Capcha, J. M., Lambert, G., Dykxhoorn, D. M., Salerno, A. G., Hare, J. M., Whitt, M. A., ... & Shehadeh, L. A. (2021). Generation of SARS-CoV-2 spike pseudotyped virus for viral entry and neutralization assays: a 1-week protocol. Frontiers in Cardiovascular Medicine, 7, 618651.
  17. Khusro, A., Aarti, C., Pliego, A. B., & Cipriano-Salazar, M. (2020). Hendra virus infection in horses: a review on emerging mystery paramyxovirus. Journal of equine veterinary science, 91, 103149.
  18. Chen, L., Sun, M., Zhang, H., Zhang, X., Yao, Y., Li, M., ... & Chiu, S. (2024). Potent human neutralizing antibodies against Nipah virus derived from two ancestral antibody heavy chains. Nature Communications, 15(1), 2987.
  19. Dong, J., Cross, R. W., Doyle, M. P., Kose, N., Mousa, J. J., Annand, E. J., ... & Crowe, J. E. (2020). Potent henipavirus neutralization by antibodies recognizing diverse sites on Hendra and Nipah virus receptor binding protein. Cell, 183(6), 1536-1550.
  20. Wong, J. J., Chen, Z., Chung, J. K., Groves, J. T., & Jardetzky, T. S. (2021). EphrinB2 clustering by Nipah virus G is required to activate and trap F intermediates at supported lipid bilayer–cell interfaces. Science Advances, 7(5), eabe1235.
  21. Rima, B., Balkema-Buschmann, A., Dundon, W. G., Duprex, P., Easton, A., Fouchier, R., ... & ICTV Report Consortium. (2019). ICTV virus taxonomy profile: Paramyxoviridae. Journal of General Virology, 100(12), 1593-1594.
  22. Román, R. G., Tornieporth, N., Cherian, N. G., Shurtleff, A. C., Jackson, M. L. A., Yeskey, D., ... & Le, T. T. (2022). Medical countermeasures against henipaviruses: a review and public health perspective. The Lancet Infectious Diseases, 22(1), e13-e27.
  23. Nikolay, B., Salje, H., Khan, A. D., Sazzad, H. M., Satter, S. M., Rahman, M., ... & Gurley, E. S. (2020). A framework to monitor changes in transmission and epidemiology of emerging pathogens: lessons from Nipah virus. The Journal of Infectious Diseases, 221(Supplement_4), S363-S369.
  24. Rahman, M. Z., Islam, M. M., Hossain, M. E., Rahman, M. M., Islam, A., Siddika, A., ... & Gurley, E. S. (2021). Genetic diversity of Nipah virus in Bangladesh. International Journal of Infectious Diseases, 102, 144-151.
  25. Li, H., Kim, J. Y. V., & Pickering, B. S. (2023). Henipavirus zoonosis: outbreaks, animal hosts and potential new emergence. Frontiers in microbiology, 14, 1167085.
  26. https://www.integralmolecular.com/virology/reporter-virus-particles/pseudovirus-neutralization-assays/
  27. Cooray, S., Howe, S. J., & Thrasher, A. J. (2012). Retrovirus and lentivirus vector design and methods of cell conditioning. In Methods in enzymology (Vol. 507, pp. 29-57). Academic Press.
  28. Sun, H., Xu, J., Zhang, G., Han, J., Hao, M., Chen, Z., ... & Yu, C. (2022). Developing pseudovirus-based neutralization assay against omicron-included SARS-CoV-2 variants. Viruses, 14(6), 1332.
  29. Cantoni, D., Wilkie, C., Bentley, E. M., Mayora-Neto, M., Wright, E., Scott, S., ... & Temperton, N. J. (2023). Correlation between pseudotyped virus and authentic virus neutralisation assays, a systematic review and meta-analysis of the literature. Frontiers in immunology, 14, 1184362.
  30. Steeds, K., Hall, Y., Slack, G. S., Longet, S., Strecker, T., Fehling, S. K., ... & Carroll, M. W. (2020). Pseudotyping of VSV with Ebola virus glycoprotein is superior to HIV-1 for the assessment of neutralising antibodies. Scientific reports, 10(1), 14289.
  31. Weiss, C. D., Wang, W., Lu, Y., Billings, M., Eick-Cost, A., Couzens, L., ... & Cooper, M. J. (2020). Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clinical Infectious Diseases, 71(12), 3096-3102.
  32. Weissman, D., Alameh, M. G., de Silva, T., Collini, P., Hornsby, H., Brown, R., ... & Montefiori, D. C. (2021). D614G spike mutation increases SARS CoV-2 susceptibility to neutralization. Cell host & microbe, 29(1), 23-31.
  33. Ou, X., Liu, Y., Lei, X., Li, P., Mi, D., Ren, L., ... & Qian, Z. (2020). Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nature communications, 11(1), 1620.
  34. Tan, Y., Liu, F., Xu, X., Ling, Y., Huang, W., Zhu, Z., ... & Chen, S. (2020). Durability of neutralizing antibodies and T-cell response post SARS-CoV-2 infection. Frontiers of Medicine, 14, 746-751.
  35. Sholukh, A. M., Fiore-Gartland, A., Ford, E. S., Miner, M. D., Hou, Y. J., Tse, L. V., ... & Corey, L. (2021). Evaluation of cell-based and surrogate SARS-CoV-2 neutralization assays. Journal of Clinical Microbiology, 59(10), 10-1128.
  36. Ma, J., Chen, R., Huang, W., Nie, J., Liu, Q., Wang, Y., & Yang, X. (2019). In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Human Vaccines & Immunotherapeutics.
  37. Liu, K. T., Han, Y. J., Wu, G. H., Huang, K. Y. A., & Huang, P. N. (2022). Overview of neutralization assays and international standard for detecting SARS-CoV-2 neutralizing antibody. Viruses, 14(7), 1560.