Main Article Content
Abstract
Neglected tropical diseases are still part of the health problems faced by the world. One of the neglected tropical diseases that has not yet reached 100% elimination is leprosy. Mycobacterium leprae is the pathogen responsible for leprosy, a chronic infectious disease that affects the skin and peripheral nerves and can lead to significant disability if left untreated. Currently, the gold standard for diagnosis is detecting acid-fast bacilli (AFB) with Ziehl-Neelsen staining; however, this method cannot distinguish between living and dead bacteria, complicating treatment assessment, relapse detection, and resistance tracking. Therefore, more accurate diagnostic instruments that can differentiate bacterial viability are needed. Since M.leprae cannot be cultured in artificial media, molecular-based assays are promising tools for rapid diagnosis. This study aims to identify recent assays for assessing bacterial viability in leprosy. Articles used are limited to the publication year between 2019 until 2024 from databases such as PubMed, ProQuest, Scopus and Google Scholar, using PRISMA methods. After filtration, from 143 articles we found 5 articles that discussed the viability of leprosy-causing bacteria. The selected studies showed that molecular assays to determine bacterial viability can be used and explored to strengthen the existing gold standard for monitoring treatment of leprosy patients
Keywords
Article Details

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
- [1] Turankar, R. P., Singh, V., Lavania, M., Singh, I., Sengupta, U., & Jadhav, R. S. (2022). Existence of viable Mycobacterium leprae in natural environment and its genetic profiling in a leprosy endemic region. Frontiers in Tropical Diseases, 3, 972682.
- [2] Santacroce, L., Del Prete, R., Charitos, I. A., & Bottalico, L. (2021). Mycobacterium leprae: a historical study on the origins of leprosy and its social stigma. Le infezioni in medicina, 29(4), 623.
- [3] Prakoeswa, C. R. S., Lubis, R. S., Anum, Q., Argentina, F., Menaldi, S. L., Gunawan, H., ... & Listiawan, M. Y. (2022). Epidemiology of leprosy in Indonesia: a retrospective study. Berk Ilmu Kesehat Kulit dan Kelamin, 34(1), 29-35.
- [4] Kementrian Kesehatan. (2024). Profil Kesehatan Indonesia 2023. Jakarta: Kementrian Kesehatan Republik Indonesia.100 p.
- [5] World Health Organization (WHO). (2020). World Health Organization. Global leprosy (Hansen disease) update, 2019: Time to Step-up Prevention Initiatives [Internet]. Vol. 95, Weekly Epidemiological Record WHO. Available from: http://www.who.int/wer
- [6] Reza, N. R., Kusumaputro, B. H., Alinda, M. D., Listiawan, M. Y., Thio, H. B., & Prakoeswa, C. R. S. (2022). Pediatric leprosy profile in the postelimination era: a study from Surabaya, Indonesia. The American journal of tropical medicine and hygiene, 106(3), 775.
- [7] Rodrigues, T. S., Gomes, L. C., Cortela, D. C., Silva, E. A., Silva, C. A., & Ferreira, S. (2020). Fatores associados à hanseníase em crianças contatos de adultos notificados em umaregião endêmica do Centro-Oeste do Brasil. Jornal de Pediatria, 96, 593-599.
- [8] Muir E. (2029). Leprosy in children. Indian J Pediatr.3(1):15–6.
- [9] Avanzi, C., Singh, P., Truman, R. W., & Suffys, P. N. (2020). Molecular epidemiology of leprosy: An update. Infection, Genetics and Evolution, 86, 104581.
- [10] Collins, J. H., Lenz, S. M., Ray, N. A., Balagon, M. F., Hagge, D. A., Lahiri, R., & Adams, L. B. (2022). A sensitive and quantitative assay to enumerate and measure Mycobacterium leprae viability in clinical and experimental specimens. Current protocols, 2(2), e359.
- [11] CDC. About Hansen’s Disease (Leprosy) [Internet]. 2024 [cited 2024 Oct 15]. Available from: https://www.cdc.gov/leprosy/about/index.html
- [12] Sugawara-Mikami, M., Tanigawa, K., Kawashima, A., Kiriya, M., Nakamura, Y., Fujiwara, Y., & Suzuki, K. (2022). Pathogenicity and virulence of Mycobacterium leprae. Virulence, 13(1), 1985-2011.
- [13] Ploemacher, T., Faber, W. R., Menke, H., Rutten, V., & Pieters, T. (2020). Reservoirs and transmission routes of leprosy; A systematic review. PLoS neglected tropical diseases, 14(4), e0008276.
- [14] Collins, J. H., Lenz, S. M., Ray, N. A., Lahiri, R., & Adams, L. B. (2023). Assessment of esxA, hsp18, and 16S transcript expression as a measure of Mycobacterium leprae viability: A comparison with the mouse footpad assay. Leprosy Review, 94(1), 7-18.
- [15] Lenz, S. M., Ray, N. A., Lema, T., Collins, J. H., Thapa, R., Girma, S., ... & Adams, L. B. (2022). Utility of a Mycobacterium leprae molecular viability assay for clinical leprosy: An analysis of cases from the Philippines, Ethiopia, and Nepal. Frontiers in Tropical Diseases, 3, 967351.
- [16] Lenz, S. M., Collins, J. H., Lahiri, R., & Adams, L. B. (2020). Rodent models in leprosy research. International textbook of leprosy.
- [17] Siwakoti, S., Rai, K., Bhattarai, N. R., Agarwal, S., & Khanal, B. (2016). Evaluation of polymerase chain reaction (PCR) with slit skin smear examination (SSS) to confirm clinical diagnosis of leprosy in eastern Nepal. PLoS neglected tropical diseases, 10(12), e0005220.
- [18] Demsiss, W., Van Henten, S., Takarinda, K. C., Kamau, E. M., & Abdela, S. G. (2022). Slit-skin smear for the classification of leprosy; are we wasting time and resource?. The Journal of Infection in Developing Countries, 16(08.1), 3S-7S.
- [19] Kementrian Kesehatan Republik Indonesia. (2020). Pedoman Nasional Pelayanan Kedokteran Tata Laksana Kusta. Kementrian Kesehatan Republik Indonesia.
- [20] Devita, A., Ibrahim, F., Menaldi, S. L. S. W., Budianti, A., & Yasmon, A. (2019). Detection of Mycobacterium leprae using real-time PCR in paucibacillary leprosy patients with negative acid-fast bacilli smears. Medical Journal of Indonesia, 28(4), 351-7.
- [21] Krismawati, H., Oktavian, A., Maladan, Y., & Wahyuni, T. (2020). Risk factor for Mycobacterium leprae detection in household contacts with leprosy patients: A study in Papua, East Indonesia. Medical Journal of Indonesia, 29(1), 64-70.
- [22] Dai, Y., Zhou, W., Jia, Q., Dong, H., Niu, Y., He, J., ... & Zheng, Y. (2020). Utility evaluation of HLA-B* 13: 01 screening in preventing trichloroethylene-induced hypersensitivity syndrome in a prospective cohort study. Occupational and Environmental Medicine, 77(3), 201-206.
- [23] Krismawati, H., Irwanto, A., Pongtiku, A., Irwan, I. D., Maladan, Y., Sitanggang, Y. A., ... & Liu, J. (2020). Validation study of HLA-B* 13: 01 as a biomarker of dapsone hypersensitivity syndrome in leprosy patients in Indonesia. PLoS Neglected Tropical Diseases, 14(10), e0008746.
- [24] Krismawati H, Ferdiana A, Irwanto A, Budiawan T, Imaniar C, Wahyuni T, et al. Implementation of genetic screening test to reduce the incidence of dapsone hypersensitivity syndrome among patients with leprosy in Papua, Indonesia: a study protocol. BMJ Open. 2022;12(5):e057173.
- [25] Satapornpong, P., Pratoomwun, J., Rerknimitr, P., Klaewsongkram, J., Nakkam, N., Rungrotmongkol, T., ... & Sukasem, C. (2021). HLA-B* 13: 01 is a predictive marker of dapsone-induced severe cutaneous adverse reactions in Thai patients. Frontiers in immunology, 12, 661135.
- [26] Maladan, Y., Krismawati, H., Agus, R., Hutapea, H. M., Tanjung, R., Cahyani, V. D., ... & Parikesit, A. A. (2021). Mutations of gyrA Gene in Mycobacterium leprae from Leprosy Patients in West Papua and Papua, Indonesia. Indonesian Journal of Pharmacy/Majalah Farmasi Indonesia, (1).
- [27] Maladan, Y., Krismawati, H., Wahyuni, T., Hutapea, H. M. L., Rokhmad, M. F., & Parikesit, A. A. (2021). Molecular docking analysis of the T450A mutation of the gene rpoB Mycobacterium leprae from leprosy patients in Papua, west Papua and north Maluku, Indonesia. Research Journal of Pharmacy and Technology, 14(7), 3578-3584.
- [28] Li, X., Li, G., Yang, J., Jin, G., Shao, Y., Li, Y., ... & Zhang, L. (2022). Drug resistance (dapsone, rifampicin, ofloxacin) and resistance-related gene mutation features in leprosy patients: a systematic review and meta-analysis. International Journal of Molecular Sciences, 23(20), 12443.
- [29] Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., ... & Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. bmj, 372.
- [30] EDWARD N. Leprosy [Internet]. Vol. 2022. MSD Manual Professional Edition: MSD Manual; 2022. Available from: https://www.msdmanuals.com/professional/infectious-diseases/mycobacteria/leprosy
- [31] Collins, J. H., Lenz, S. M., Ray, N. A., Balagon, M. F., Hagge, D. A., Lahiri, R., & Adams, L. B. (2022). A sensitive and quantitative assay to enumerate and measure Mycobacterium leprae viability in clinical and experimental specimens. Current protocols, 2(2), e359.
- [32] Beissner, M., Woestemeier, A., Saar, M., Badziklou, K., Maman, I., Amedifou, C., ... & Bretzel, G. (2019). Development of a combined RLEP/16S rRNA (RT) qPCR assay for the detection of viable M. leprae from nasal swab samples. BMC infectious diseases, 19(1), 753.
- [33] Lenz, S. M., Ray, N. A., Lema, T., Collins, J. H., Thapa, R., Girma, S., ... & Adams, L. B. (2022). Utility of a Mycobacterium leprae molecular viability assay for clinical leprosy: An analysis of cases from the Philippines, Ethiopia, and Nepal. Frontiers in Tropical Diseases, 3, 967351.
- [34] Tami, M. (2019). Hubungan Antara Kusta Tipe Pausi Basiler Dengan Angka Keberhasilan Pengobatan Kusta Di Jawa Timur. Fakultas Kesehatan Masyarakat Universitas Airlangga, 7(1), 17-24.
- [35] Pena, M. T., Lahiri, R., Ebenezer, G. J., Wheat, S. W., Figarola, J., Truman, R. W., & Adams, L. B. (2022). The armadillo as a model for leprosy nerve function impairment: preventative and therapeutic interventions. Frontiers in Medicine, 9, 879097.
- [36] Mohanty, P. S., Naaz, F., Bansal, A. K., Kumar, D., Sharma, S., Arora, M., ... & Singh, M. (2020). Molecular detection of Mycobacterium leprae using RLEP-PCR in post elimination era of leprosy. Molecular biology research communications, 9(1), 17.
- [37] Neumann, A. D. S., Fontes, A. N. B., Lopes, M. Q. P., Suffys, P. N., Moraes, M. O., & Lara, F. A. (2022). Heterogeneous persistence of Mycobacterium leprae in oral and nasal mucosa of multibacillary patients during multidrug therapy. Memórias do Instituto Oswaldo Cruz, 117, e220058.
- [38] Chakraborty, A., Ghosh, R., & Biswas, A. (2022). Interaction of constituents of MDT regimen for leprosy with Mycobacterium leprae HSP18: impact on its structure and function. The FEBS Journal, 289(3), 832-853.
- [39] Lahiri, R., Adams, L. B., Thomas, S. S., & Pethe, K. (2022). Sensitivity of Mycobacterium leprae to Telacebec. Emerging Infectious Diseases, 28(3), 749.
- [40] Singh, I., Ahuja, M., Lavania, M., Pathak, V. K., Turankar, R. P., Singh, V., ... & Saini, G. B. (2023). Efficacy of fixed duration multidrug therapy for the treatment of multibacillary leprosy: A prospective observational study from Northern India. Indian Journal of Dermatology, Venereology and Leprology, 89(2), 226-232.
