Main Article Content

Abstract

Klebsiella pneumoniae is one of the ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) due to their high level of antibiotic resistance. Ceftriaxone is one of the cephalosporin antibiotic that functions inhibit bacterial cell wall synthesis and used for treating K. pneumoniae infections. Resistance to ceftriaxone in K. pneumoniae has been widely reported, with one contributing factor being the production of β-lactamase enzymes encoded by the genes blaCTX-M, blaSHV, and blaTEM. This study characterized the presence of these genes  in 12 clinical isolates of         K. pneumoniae and analyzed their correlation with phenotypic resistance to ceftriaxone. All isolates characterized with antimicrobial susceptibility testing (AST) and disk diffusion methods to evaluate the phenotypic production of blaCTX-M, blaSHV, and blaTEM. Molecular analysis using the polymerase chain reaction (PCR) method showed the genes blaCTX-M and blaTEM were detected in 11 isolates (91.67%), and blaSHV was found in 9 isolates (75%). The distribution pattern of the blaCTX-M, blaSHV and blaTEM resistance genes was present in 8 isolates (66.67%), with MIC values > 64 µg/mL. The presence of blaCTX-M, blaSHV, and blaTEM genes together in K. pneumoniae isolates represents a potential risk for resistance to other β lactam antibiotics.

Article Details

How to Cite
1.
Engel Y, Conny Riana Tjampakasari, Fithriyah Sjatha. Distribution of blaCTX-M, blaSHV, blaTEM genes in Extended Spectrum β-Laktamase Producing Klebsiella pneumoniae from Clinical Isolates in Jakarta. EKSAKTA [Internet]. 2025May5 [cited 2025May8];26(02):175-8. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/549

References

  1. Denissen, J., Reyneke, B., Reyneke, M. S., Havenga, B., Barnard, T., Khan, S., Kan, W. (2022). Prevalence of ESKAPE pathogens in the environment: antibiotic resistance status, community-acquired infection and risk to human health. International Journal of Hygiene and Environmental Health, 244(114006).
  2. Chang, D., Sharma, L., Dela Cruz, C. S., Zhang, D. (2021). Clinical epidemiology, risk factors, and control strategies of Klebsiella pneumoniae infection. Front. Microbiol,12, 1-9.
  3. Wang, G., Zhao, G., Chao, X., Xie, L., Wang, H. (2020). The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int. J. Environ. Res. Public Health, 17, 1-17.
  4. Akram, F., Imtiaz, M., Haq, I. ul. (2023). Emergent crisis of antibiotic resistance: A silent pandemic threat to 21st century. Microb. Pathog. 174(105923).
  5. Salawudeen, A., Raji, Y. E., Jibo, G.G. (2023). Epidemiology of multidrug-resistant Klebsiella pneumoniae infection in clinical setting in South-Eastern Asia: a systematic review and meta-analysis. Antimicrob. Resist. Infect. Control, 12, 1-14.
  6. Hamadalneel Y. B., Alamin M. F, Attaalla A. M. (2024). A four-year trend of ceftriaxone resistance and associated risk factors among different clinical samples in Wad Medani, Sudan: a cross-sectional retrospective study. Cureus, 9(16), 7.
  7. Ahmad, Q., Sabrina, T., Diba, M. F., Amalia, E., Putra, R.A. (2022). Gambaran infeksi Klebsiella pneumoniae penghasil Extended-spectrum β-lactamase (ESBL) pada pasien COVID-19 di RSUP Dr. Mohammad Hoesin periode Januari 2021- Juni 2021. JAMBI Med. J. Jurnal Kedokt. dan Kesehatan, 10, 186-198.
  8. Elvionita, C., Sari, I. P., Nuryastuti, T. (2023). Evaluation the rationality of clinical outcomes of antibiotic use and patterns of bacterial resistance to antibiotics in children with pneumonia. Maj. Farm., 19, 131–139.
  9. Harris, M., Fasolino, T., Ivankovic, D., Davis, N. J., Brownlee, N. (2023). Genetic factors that contribute to antibiotic resistance through intrinsic and acquired bacterial genes in urinary tract infections. Microorganisms, 11(1407).
  10. Mohammedkheir, M. I. A., Gaafar, E. M., Abdalla, E. G. E. (2024). Assessment of blaTEM, blaSHV, and blaCTX-M genes of antibiotic resistance in Gram-negative bacilli causing urinary tract infections in Khartoum State: a cross-sectional study. BMC Infect Dis, 24(141).
  11. Salawudeen, A., Mohd Desa, M.N., Neoh, H.M., Masri, S.N., Jamaluddin, T.Z.M.T. (2023). Genomic Determinant of Resistance in Extended Spectrum Beta Lactamases (ESBLS) Klebsiella pneumoniae Isolates of a Teaching Hospital In Klang Valley. International Journal of Infectious Diseases, 130, S53-S156.
  12. Yamasaki, S., Shigemura, K., Osawa, K., Kitagawa, K., Ishii, A., Kuntaman, K., Shirakawa, T., Miyara, T., Fujisawa, M. (2021). Genetic analysis of ESBL-producing Klebsiella pneumoniae isolated from UTI patients in Indonesia. J Infect Chemother, 27(1), 55-61.
  13. Pishtiwan, A. H., Khadija, K. M. (2019). Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli isolated from thalassemia patients in Erbil, Iraq. Mediterr. J. Hematol. Infect. Dis., 11, 1–7.
  14. Mohajeri, P., Kavosi, S., Esmailzadeh, T., Farahani, A., Dastranj, M. (2018). Molecular characteristics of extended-spectrum-beta-lactamase-producing Klebsiella pneumoniae isolates in the west of Iran. Adv. Hum. Biol., 8(175).
  15. Al-Subol, I., Youssef, N. (2015). Prevalence of CTX-M, TEM and SHV beta-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae isolated from Aleppo University Hospitals, Aleppo, Syria. Arch. Clin. Infect. Dis, 10.
  16. Mohammed, S. A., & Abdulla, N. Y. (2023). Studying several virulence factors phenotypically and genetically to isolate Klebsiella pneumoniae from diabetic patients. Egyptian Academic Journal of Biological Sciences. C, Physiology and Molecular Biology, 15(2), 59-65.
  17. Tripathi, N., Sapra, A. Gram Staining. (2023). StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK562156/.
  18. Duraye, A. H. F., Hadi, Z. H., Jarad, Z. H., Naji, Z. S., Hussein, Z. H., Abd Hamada, Z. H., Naema, F. H. (2024). Evaluation of Vitek System in Identification and Susceptibility of Bacterial Infections in Wasit Province. International Academic Journal of Applied Bio-Medical Sciences, 5, 1-7.
  19. Weinstein, M. P., Lewis, J. S. (2020). The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. Journal of Clinical Microbiology, 58.
  20. Gajic, I. et al. (2022). Antimicrobial Susceptibility Testing: A Comprehensive Review of Currently Used Methods. Antibiotics, 11.
  21. Feßler, A. T., Wang, Y., Burbick, C.R. (2023). Antimicrobial susceptibility testing in veterinary medicine: performance, interpretation of results, best practices and pitfalls. One Health Adv., 1, 26.
  22. Kowalska-Krochmal, B, Dudek-Wicher, R. (2021). The minimum inhibitory concentration of antibiotics: Methods, interpretation, clinical relevance. Pathogens, 10, 1–21.
  23. Lubwama, M., Kateete, D. P., Katende, G., Kigozi, E., Orem, J., Phipps, W., Bwanga, F. (2024). CTX-M, TEM, and SHV Genes in Escherichia coli, Klebsiella pneumoniae, and Enterobacter spp isolated from hematologic cancer patients with bacteremia in Uganda. Infection and Drug Resistance, 17, 641–653.
  24. Abdallah, M., Haroun, S., Tahoun, A., Hegazy, Y. M., Eldomany, R. (2023). Coexistence Of blaOXA-48, blaVIM, And blaSHV Genes In Klebsiella pneumoniae And Escherichia coli Isolated From Urinary Tract Infections: Microbiological And Epidemiological Analysis. JPMA. The Journal of the Pakistan Medical Association, 73(4), S294-S304.
  25. Nargesian, M., Saffari, M., Zargar, M. (2023). Molecular Evaluation of β-Lactamase (blaSHV, blaTEM, blaCTX-M) genes in multidrug Resistant of Klebsiella Pneumoniae. Clinical Laboratory, 69(12), 2516.
  26. Maveke, S. M., Aboge, G. O., Kanja, L. W., Mainga, A. O., Gachau, N., Muchira, B. W., Moriasi, G. A. (2024). Phenotypic and genotypic characterization of Extended Spectrum Beta‐Lactamase‐producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in two Kenyan facilities: a national referral and a level five hospital. International Journal of Microbiology, 1, 7463899.
  27. Dirar, M. H., Bilal, N. E., Ibrahim, M. E., Hamid, M. E. (2020). Prevalence of extended-spectrum β-lactamase (ESBL) and molecular detection of blaTEM, blaSHV and blaCTX-M genotypes among Enterobacteriaceae isolates from patients in Khartoum, Sudan. Pan Afr. Med. J., 37, 1–11.
  28. Gupta V., Singh M., Datta P., Goel A., Singh S., Prasad K., Chander J. (2020). Detection of various beta-lactamases in Escherichia coli and Klebsiella sp.: a study from tertiary care centre of North India. Indian J Med Microbiol., 38(3 & 4), 390-396.
  29. Asghari, B., Goodarzi, R., Mohammadi, M., Nouri, F., Taheri, M. (2021). Detection of mobile genetic elements in multidrug-resistant Klebsiella pneumoniae isolated from different infection sites in Hamadan, west of Iran. BMC Res. Notes, 14, 4–9.
  30. Xanthopoulou, K., Carattoli, A., Wille, J., Biehl, L. M., Rohde, H., Farowski, F., ... & Higgins, P. G. (2020). Antibiotic resistance and mobile genetic elements in extensively drug-resistant Klebsiella pneumoniae sequence type 147 recovered from Germany. Antibiotics, 9(10), 675.