Main Article Content

Abstract

Uncontrolled hypertension can progress to kidney damage characterized by structural and functional changes, ultimately contributing to kidney fibrosis. Although, hypertension can be treated. However, the prevalence of hypertension in Indonesia is increasing. Therefore, proper treatment is necessary. Elevated levels of Transforming Growth Factor-β1 and Connective Tissue Growth Factor are critical factors that are key drivers of fibrogenic pathway. Appropriate exercise can control blood pressure, renal function, and prevent kidney fibrosis due to hypertension by activating the nitric oxide signaling pathway and reducing the regulation of the TGF-β, p-Smad2/3 and CTGF. This study aims to determine the optimal type of exercise to prevent kidney fibrosis caused by hypertension. Articles used are limited to the publication year between 2018 and 2024. We analyzed the role of exercise on kidney fibrotic pathway in hypertension using PRISMA methods from PubMed, ScienceDirect, Scopus, and Google Scholar. We found 7 articles and proved several significant effects of exercise on hypertension subjects. This study summarized that moderate-intensity exercise is more influential in controlling blood pressure and renal function, as well as inhibits kidney fibrosis due to hypertension.

Keywords

hypertension exercise kidney fibrosis fibrotic pathway

Article Details

How to Cite
1.
Afifah F, Dewi Irawati Soeria Santoso. Preventive Effect of Exercise on Kidney Fibrotic Pathway in Hypertension . EKSAKTA [Internet]. 2024Sep.30 [cited 2024Oct.12];25(03):323-3. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/532

References

  1. World Health Organization. (2023). Global report on hypertension: The race against a silent killer. Geneva, Switzerland: World Health Organization. Retrieved from https://www.who.int/publications/i/item/9789240081062. Diakses pada tanggal 23 Juli 2024
  2. KEMENKES RI. (2018). Laporan Hipertensi Riset Kesehatan Dasar (RISKESDAS). Badan Penelitian Dan Pengembangan Kesehatan. Retrieved from https://www.kemkes.go.id. Diakses pada tanggal 23 Juli 2024
  3. Drożdż, D., Drożdż, M., & Wójcik, M. (2023). Endothelial dysfunction as a factor leading to arterial hypertension. Pediatric Nephrology (Berlin, Germany), 38(9), 2973–2985.
  4. Huang, C., Lin, Y.Y., Yang, A.L., Kuo, T.W., Kuo, C.H., & Lee, S.D. (2018). Anti-Renal Fibrotic Effect of Exercise Training in Hypertension. International Journal of Molecular Sciences, 19(2).
  5. Ameer, O. Z. (2022). Hypertension in chronic kidney disease: What lies behind the scene. Frontiers in Pharmacology, 13, 949260.
  6. Russo, E., Bussalino, E., Macciò, L., Verzola, D., Saio, M., Esposito, P., … Viazzi, F. (2023). Non-Haemodynamic Mechanisms Underlying Hypertension-Associated Damage in Target Kidney Components. International Journal of Molecular Sciences, 24(11), 9422.
  7. Levey, A. S., Eckardt, K.U., Dorman, N. M., Christiansen, S. L., Hoorn, E. J., Ingelfinger, J. R., … Winkelmayer, W. C. (2020). Nomenclature for kidney function and disease: Report of a Kidney Disease: Improving Global Outcomes (KDIGO) Consensus Conference. Kidney International, 97(6), 1117–1129.
  8. Maranduca, M. A., Clim, A., Pinzariu, A. C., Statescu, C., Sascau, R. A., Tanase, D. M., … Serban, I. L. (2023). Role of arterial hypertension and angiotensin II in chronic kidney disease (Review). Experimental and Therapeutic Medicine, 25(4), 153.
  9. Weldegiorgis, M., & Woodward, M. (2020). The impact of hypertension on chronic kidney disease and end-stage renal disease is greater in men than women: A systematic review and meta-analysis. BMC Nephrology, 21(1), 506.
  10. Lee, H., Kwon, S. H., Jeon, J. S., Noh, H., Han, D. C., & Kim, H. (2022). Association between blood pressure and the risk of chronic kidney disease in treatment-naïve hypertensive patients. Kidney Research and Clinical Practice, 41(1), 31–42.
  11. Luo, M., Luo, S., Xue, Y., Chang, Q., Yang, H., Dong, W., … Cao, S. (2023). Aerobic exercise inhibits renal EMT by promoting irisin expression in SHR. iScience, 26(2), 105990.
  12. Zhao, B., Xu, Y., Chen, Y., Cai, Y., Gong, Z., Li, D., … Yin, Y. (2022). Activation of TRPV4 by lactate as a critical mediator of renal fibrosis in spontaneously hypertensive rats after moderate- and high-intensity exercise. Frontiers in Physiology, 13, 927078.
  13. Song, Y., Jia, H., Hua, Y., Wu, C., Li, S., Li, K., … Wang, Y. (2022). The Molecular Mechanism of Aerobic Exercise Improving Vascular Remodeling in Hypertension. Frontiers in Physiology, 13, 792292.
  14. Duan, Y.C., Shi, L., Jin, Z., Hu, M., Huang, H., Yan, T., & Zhang, K.R. (2021). Swimming Exercise Ameliorates Hypertension-Induced Kidney Dysfunction via Alleviating Renal Interstitial Fibrosis and Apoptosis. Kidney & Blood Pressure Research, 46(2), 219–228.
  15. Xiong, Y., Luan, Y., Zhang, B., Zhang, S., & Wang, X. (2021). Morphological Study of the Effect of Aerobic Exercise on Organs and Arteries in Spontaneously Hypertensive Rats. Healthcare (Basel, Switzerland), 9(8).
  16. Ma, J., & Chen, X. (2022). Advances in pathogenesis and treatment of essential hypertension. Frontiers in Cardiovascular Medicine, 9, 1003852.
  17. Jama, H. A., Muralitharan, R. R., Xu, C., O’Donnell, J. A., Bertagnolli, M., Broughton, B. R. S., … Marques, F. Z. (2022). Rodent models of hypertension. British Journal of Pharmacology, 179(5), 918–937.
  18. Bhat, M., Zaid, M., Singh, S., Gill, K., Tantray, J., Sharma, R. K., … Sharma, A. K. (2023). A current review on animal models of anti-hypertensive drugs screening. Health Sciences Review, 6, 100078.
  19. Gupta, A. (2022). An Overview of Gene Variants of Endothelin-1: A Critical Regulator of Endothelial Dysfunction. In Endothelial Dysfunction—A Novel Paradigm. IntechOpen.
  20. Kuczeriszka, M., & Wąsowicz, K. (2022). Animal models of hypertension: The status of nitric oxide and oxidative stress and the role of the renal medulla. Nitric Oxide, 125–126, 40–46.
  21. Chen, H., Chen, C., Spanos, M., Li, G., Lu, R., Bei, Y., & Xiao, J. (2022). Exercise training maintains cardiovascular health: Signaling pathways involved and potential therapeutics. Signal Transduction and Targeted Therapy, 7(1), 306.
  22. Cao, S.Y., Chang, Q., Liu, G.C., Luo, M.H., Wang, Y., & He, L.L. (2022). [Aerobic exercise improves renal fibrosis in spontaneously hypertensive rats]. Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi, Chinese journal of applied physiology, 38(3), 212–217.
  23. Yakasai, A. M., Maharaj, S. S., Nuhu, J. M., & Danazumi, M. S. (2021). Moderate intensity endurance exercise: A beneficial intervention for relative cardiovascular parameters of primary and secondary hypertensive patients. Randomised controlled trial. European Journal of Physiotherapy, 23(4), 259–265.
  24. Ye, F., Wu, Y., Chen, Y., Xiao, D., & Shi, L. (2019). Impact of moderate- and high-intensity exercise on the endothelial ultrastructure and function in mesenteric arteries from hypertensive rats. Life Sciences, 222, 36–45.
  25. Burnier, M., & Damianaki, A. (2023). Hypertension as Cardiovascular Risk Factor in Chronic Kidney Disease. Circulation Research. (Hagerstown, MD).
  26. Nunes, K. P., de Oliveira, A. A., Mowry, F. E., & Biancardi, V. C. (2019). Targeting toll-like receptor 4 signalling pathways: Can therapeutics pay the toll for hypertension?, British Journal of Pharmacology, 176(12), 1864–1879.
  27. Lucero, C. M., Prieto-Villalobos, J., Marambio-Ruiz, L., Balmazabal, J., Alvear, T. F., Vega, M., … Gómez, G. I. (2022). Hypertensive Nephropathy: Unveiling the Possible Involvement of Hemichannels and Pannexons. International Journal of Molecular Sciences, 23(24).
  28. American Heart Association. (2022). How High Blood Pressure Can Lead to Kidney Damage or Failure. Retrieved from https://www.heart.org/en/health-topics/high-blood-pressure/health-threats-from-high-blood-pressure/high-blood-pressure-and-your-kidneys. Diakses pada tanggal 23 Juli 2024
  29. Kashani, K., Rosner, M. H., & Ostermann, M. (2020). Creatinine: From physiology to clinical application. European Journal of Internal Medicine, 72, 9–14.
  30. Chen, X., Jin, H., Wang, D., Liu, J., Qin, Y., Zhang, Y., … Xiang, Q. (2023). Serum creatinine levels, traditional cardiovascular risk factors and 10-year cardiovascular risk in Chinese patients with hypertension. Frontiers in Endocrinology, 14, 1140093.
  31. Zachariah, S., Kumar, K., Lee, S. W. H., Choon, W. Y., Naeem, S., & Leong, C. (2019). Chapter 7—Interpretation of Laboratory Data and General Physical Examination by Pharmacists. In D. Thomas (Ed.), Clinical Pharmacy Education, Practice and Research (pp. 91–108). Elsevier.
  32. Carlström, M. (2021). Nitric oxide signalling in kidney regulation and cardiometabolic health. Nature Reviews Nephrology, 17(9), 575–590.
  33. Kawakami, S., Yasuno, T., Kawakami, S., Ito, A., Fujimi, K., Matsuda, T., … Michishita, R. (2022). The moderate‐intensity continuous exercise maintains renal blood flow and does not impair the renal function. Physiological Reports, 10(15), e15420.
  34. Luo, M., Cao, S., Lv, D., He, L., He, Z., Li, L., … Chang, Q. (2022). Aerobic Exercise Training Improves Renal Injury in Spontaneously Hypertensive Rats by Increasing Renalase Expression in Medulla. Frontiers in Cardiovascular Medicine, 9.
  35. Wang, Y., Yu, F., Li, A., He, Z., Qu, C., He, C., … Zhan, H. (2022). The progress and prospect of natural components in rhubarb (Rheum ribes L.) in the treatment of renal fibrosis. Frontiers in Pharmacology, 13, 919967.
  36. Black, L. M., Lever, J. M., & Agarwal, A. (2019). Renal Inflammation and Fibrosis: A Double-edged Sword. The Journal of Histochemistry and Cytochemistry, Official Journal of the Histochemistry Society, 67(9), 663–681.
  37. Zhang, Y., Jin, D., Kang, X., Zhou, R., Sun, Y., Lian, F., & Tong, X. (2021). Signaling Pathways Involved in Diabetic Renal Fibrosis. Frontiers in Cell and Developmental Biology, 9, 696542.
  38. Pezeshki, Z., & Nematbakhsh, M. (2021). Renin-Angiotensin System Induced Secondary Hypertension: The Alteration of Kidney Function and Structure. International Journal of Nephrology, 2021(1), 5599754.
  39. Hassan, M. D. S., Razali, N., Abu Bakar, A. S., Abu Hanipah, N. F., & Agarwal, R. (2023). Connective tissue growth factor: Role in trabecular meshwork remodeling and intraocular pressure lowering. Experimental Biology and Medicine (Maywood, N.J.), 248(16), 1425–1436.
  40. Zhao, X., Chen, J., Sun, H., Zhang, Y., & Zou, D. (2022). New insights into fibrosis from the ECM degradation perspective: The macrophage-MMP-ECM interaction. Cell & Bioscience, 12, 117.