Main Article Content

Abstract

Acute Respiratory Infections (ARI) are one of the causes of high mortality in the world, such as pneumonia in toddlers. Pneumonia cases in West Java are high compared to other provinces. In this study, pneumonia cases will be modeled with Generalized Additive Models (GAM) based on penalized spline estimators. The optimal number of knots is determined using the full search algorithm and the optimal smoothing parameter is obtained based on the minimum Generalized Cross Validation (GCV) value of order one or two. Then, GAM parameter estimation is performed using the local scoring algorithm. Formed model based on the order, number of knots, and smoothing parameters of each predictor variable with order one, number of knots two, and optimal smoothing parameter one for , order two, number of knots three, and optimal smoothing parameter one for , and order one, number of knots two, and optimal smoothing parameter for  whose parameters were estimated by local scoring resulted in a coefficient of determination of 0.679. This indicates that 67.9% of the factors from the predictor variables affect the percentage of pneumonia cases among under-fives while the remaining 32.1% is influenced by other factors outside the model.

Keywords

Pneumonia GAM Penalized spline Full search GCV Local scoring

Article Details

How to Cite
1.
Wahyu A, Nurul Gusriani, Kankan Parmikanti. Generalized Additive Models for Modeling Pneumonia Cases in Toddlers in West Java based on the Penalized Spline Estimator. EKSAKTA [Internet]. 2024Jun.30 [cited 2024Nov.21];25(02):138-50. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/491

References

  1. WHO. (2020). Retrieved From Encyclopedia, https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Diakses pada tanggal 19 Agustus 2023.
  2. Fitri, F., Sari, F. M., Gamayanti, N. F., & Utami, I. T. (2021). Infant Mortality Case: An Application of Negative Binomial Regression in order to Overcome Overdispersion in Poisson Regression. EKSAKTA: Berkala Ilmiah Bidang MIPA, 22(3), 200-210.
  3. Anwar, A., & Dharmayanti, I. (2014). Pneumonia pada anak balita di Indonesia. Kesmas: Jurnal Kesehatan Masyarakat Nasional (National Public Health Journal), 8(8), 359-365.
  4. Hasan, M. M., Faruk, M. O., Biki, B. B., Riajuliislam, M., Alam, K., & Shetu, S. F. (2021, January). Prediction of Pneumonia Disease of Newborn Baby Based on Statistical Analysis of Maternal Condition Using Machine Learning Approach. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 919-924). IEEE.
  5. Nisrina, N., Handoko, B., & Andriyana, Y. (2023). The Analysis of Factors Influencing Incidence Rates of Toddler Pneumonia in Purwakarta Districts Using Panel Data Spatial Regression. EKSAKTA: Berkala Ilmiah Bidang MIPA, 24(02), 122-132.
  6. Debataraja, , dan Imro’ah Nurfitri.( 2020). Analisis regresi dengan metode least absolute shrinkage and selection operator (lasso) dalam mengatasi multikolinearitas. Bimaster : Buletin Ilmiah Matematika, Statistika Dan Terapannya. 9(1):31–38.
  7. Chen, X., & Derezinski, M. (2021). Query complexity of least absolute deviation regression via robust uniform convergence. In Conference on Learning Theory (pp. 1144-1179). PMLR.
  8. Rifada, M., Suliyanto, E. T., & Kesumawati, A. (2018). The logistic regression analysis with nonparametric approach based on local scoring algorithm (Case study: Diabetes mellitus type II cases in Surabaya of Indonesia). Int. J. Adv. Soft Comput. Appl, 10, 167-178.
  9. Pinilla, J., & Negrín, M. (2021). Non-parametric generalized additive models as a tool for evaluating policy interventions. Mathematics, 9(4), 299.
  10. Pertiwi, F. D., & Nasution, A. S. (2022). Faktor-faktor yang Berhubungan dengan Kejadian Pneumonia pada Balita di Puskesmas Semplak Kota Bogor 2020. Promotor, 5(3), 273-280.
  11. Oktaviani, I., Hayati, S., & Supriatin, E. (2014). Faktor-faktor yang berhubungan dengan kejadian infeksi saluran pernafasan akut (ISPA) pada balita di Puskesmas Garuda Kota Bandung. Jurnal Keperawatan BSI, 2(2).
  12. Ayu, D., Winarso, S., & Rokhmah, D. (2020). Pengaruh Indikator Perilaku Hidup Bersih dan Sehat (PHBS) Terhadap Gejala Pneumonia Pada Balita di Puskesmas Mojopanggung (perkotaan), Puskesmas Tapanrejo (pedesaan) dan Puskesmas Kedungrejo (pesisir) Banyuwangi. Multidisciplinary Journal, 3(1), 1-5.
  13. Perperoglou, A., Sauerbrei, W., Abrahamowicz, M., & Schmid, M. (2019). A review of spline function procedures in R. BMC medical research methodology, 19, 1-16.
  14. Ruppert, D. (2002). Selecting the number of knots for penalized splines. Journal of computational and graphical statistics, 11(4), 735-757.
  15. Dani, A. T. R., Ratnasari, V., & Budiantara, I. N. (2021, March). Optimal Knots Point and Bandwidth Selection in Modeling Mixed Estimator Nonparametric Regression. In IOP Conference Series: Materials Science and Engineering (Vol. 1115, No. 1, p. 012020). IOP Publishing.
  16. Hastie, T., & Tibshirani, R. (1987). Generalized additive models: some applications. Journal of the American Statistical Association, 82(398), 371-386.
  17. Sormin, C., Gusmanely, Z., & Nurhidayah, N. (2020). Generalized Poisson Regression Type-II at Jambi City Health Office. EKSAKTA: Berkala Ilmiah Bidang MIPA, 21(1), 54-58.
  18. Chatterjee, S., & Hadi, A. S. (2015). Regression analysis by example. John Wiley & Sons.
  19. Yuinanda, S., Multahadah, C., Marisa, H., & Abdullah, M. (2023). Water Quality Model in Jambi Province using Geographically Weighted Regression. EKSAKTA: Berkala Ilmiah Bidang MIPA, 23(03), 436-452.
  20. Kahar, A. M., Suparti, S., & Hakim, A. R. (2023). Analisis Indeks Harga Saham Gabungan Dan Faktor Pengaruhnya Menggunakan Pemodelan Regresi Semiparametrik Kernel Dilengkapi Gui-R. Jurnal Gaussian, 12(1), 30-41.
  21. Astuti, D. A., Srinadi, I. A., & Susilawati, M. (2018). Pendekata Regresi Nonparametrik dengan Menggunakan Estimator Kernel pada Data Kurs Rupiah Terhadap Dolar Amerika Serikat. E-Jurnal Matematika.
  22. Dewi, K., Gusriani, N., & Parmikanti, K. (2023). Factors Affecting the Number of Infant Morality Cases in West Java for the 2019-2020 Period using Generalized Poisson Regression (GPR). EKSAKTA: Berkala Ilmiah Bidang MIPA, 24(02), 259-270.
  23. Fernanda, A., & Debataraja, N. N. (2023). Pemodelan Data Produksi Kelapa Sawit Di Kalimantan Barat Menggunakan Generalized Additive Model. Bimaster: Buletin Ilmiah Matematika, Statistika dan Terapannya, 12(3).
  24. Ravindra, K., Rattan, P., Mor, S., & Aggarwal, A. N. (2019). Generalized additive models: Building evidence of air pollution, climate change and human health. Environment international, 132, 104987.
  25. Siregar, N. R. A. A., Farida, F., Falasifah, S., El Fahmi, M. F., & Chamidah, N. (2022). Pemodelan Harga Minyak Mentah Dunia Berdasarkan Efek Pandemi Covid-19 Dengan Estimator Penalized Spline. MUST: Journal of Mathematics Education, Science and Technology, 7(2), 152-166.
  26. Jao, N., Islamiyati, A., & Sunusi, N. (2022). Pemodelan Regresi Nonparametrik Spline Poisson pada Tingkat Kematian Bayi di Sulawesi Selatan. Estimasi: Journal of Statistics and Its Application, 14-22.
  27. Ahadi, G. D., & Zain, N. N. L. E. (2023). Pemeriksaan Uji Kenormalan dengan Kolmogorov-Smirnov, Anderson-Darling dan Shapiro-Wilk. Eigen Mathematics Journal, 11-19.
  28. Chicco, D., Warrens, M. J., & Jurman, G. (2021). The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. Peerj computer science, 7, e623.
  29. Buja, A., Hastie, T., & Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, 453-510.
  30. Jiang, W., Wu, X., Gong, Y., Yu, W., & Zhong, X. (2020). Holt–Winters smoothing enhanced by fruit fly optimization algorithm to forecast monthly electricity consumption. Energy, 193, 116779.