Main Article Content

Abstract

Obesity is a manifestation of abnormal fat accumulation which can lead to impairment in several organs, including the brain. Neuroinflammation is considered the cause of cell death as well as reactive oxygen species in hippocampal neuron cells. It results in disturbance of memory forming process. Impaired learning and memory function affects a person's ability to carry out daily tasks and lower quality of life over time, so they should be circumvented with preventive, curative, and rehabilitative measures. The understanding of the pathological mechanisms of obesity-induced memory impairment based on the changes at molecular levels is imperative for an effective management. We collected and reviewed research articles to summarize the pathological mechanisms. Twenty studies were included in this review in terms of signaling pathway, molecular markers in brain and changes in memory and behavior pattern. It is showed that memory changes in obesity could be resulted from inflammation, impaired neurogenesis and cell senescence via various mechanisms and pathways. In conclusion, the understanding of the pathomechanisms in obesity-induced memory impairment aids to its the prevention and treatment.

Keywords

Obesity, neuroinflammation, memory, learning

Article Details

How to Cite
1.
Ariani C, Ibrahim N, Yolanda S. Learning and Memory Impairment in High Fat Diet Induced Obesity . EKSAKTA [Internet]. 2025Jan.23 [cited 2025Jan.30];26(01):23-34. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/483

References

  1. World Health Organization, ‘Obesity and Overweight’. Accessed: Nov. 09, 2023. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
  2. Kementerian Kesehatan Republik Indonesia Badan Penelitian dan Pengembangan Kesehatan, ‘Hasil Utama Riskesdas 2018’, https://www.litbang.kemkes.go.id/hasil-utama-riskesdas-2018/. Accessed: Aug. 04, 2022. [Online]. Available: https://www.litbang.kemkes.go.id/hasil-utama-riskesdas-2018/
  3. Gadde, K. M., Martin, C. K., Berthoud, H. R., & Heymsfield, S. B. (2018). Obesity: pathophysiology and management. Journal of the American College of Cardiology, 71(1), 69-84.
  4. Stroebe, W. (2023). Is the energy balance explanation of the obesity epidemic wrong?. Appetite, 188, 106614.
  5. Kawai, T., Autieri, M. V., & Scalia, R. (2021). Adipose tissue inflammation and metabolic dysfunction in obesity. American Journal of Physiology-Cell Physiology, 320(3), C375-C391.
  6. Smith, U., & Kahn, B. B. (2016). Adipose tissue regulates insulin sensitivity: role of adipogenesis, de novo lipogenesis and novel lipids. Journal of internal medicine, 280(5), 465-475.
  7. Lin, X., & Li, H. (2021). Obesity: epidemiology, pathophysiology, and therapeutics. Frontiers in endocrinology, 12, 706978.
  8. Paolacci, S., Borrelli, A., Stuppia, L., Campanile, F. C., Dallavilla, T., Krajčovič, J., ... & Bertelli, M. (2019). Mendelian obesity, molecular pathways and pharmacological therapies: a review. Eur Rev Med Pharmacol Sci, 23(3), 1357-1378.
  9. Mahmoud, R., Kimonis, V., & Butler, M. G. (2022). Genetics of obesity in humans: a clinical review. International journal of molecular sciences, 23(19), 11005.
  10. Loos, R. J., & Yeo, G. S. (2022). The genetics of obesity: from discovery to biology. Nature Reviews Genetics, 23(2), 120-133.
  11. Wong, H. S. C., Tsai, S. Y., Chu, H. W., Lin, M. R., Lin, G. H., Tai, Y. T., ... & Chang, W. C. (2022). Genome-wide association study identifies genetic risk loci for adiposity in a Taiwanese population. PLoS Genetics, 18(1), e1009952.
  12. Sui, S. X., & Pasco, J. A. (2020). Obesity and brain function: The brain–body crosstalk. Medicina, 56(10), 499.
  13. Fernández-Andújar, M., Morales-García, E., & García-Casares, N. (2021). Obesity and gray matter volume assessed by neuroimaging: a systematic review. Brain sciences, 11(8), 999.
  14. Nguyen, J. C., Killcross, A. S., & Jenkins, T. A. (2014). Obesity and cognitive decline: role of inflammation and vascular changes. Frontiers in neuroscience, 8, 375.
  15. Arnsten, A. F., Datta, D., & Wang, M. (2021). The genie in the bottle-magnified calcium signaling in dorsolateral prefrontal cortex. Molecular Psychiatry, 26(8), 3684-3700.
  16. Cools, R., & Arnsten, A. F. (2022). Neuromodulation of prefrontal cortex cognitive function in primates: the powerful roles of monoamines and acetylcholine. Neuropsychopharmacology, 47(1), 309-328.
  17. Ott, T., & Nieder, A. (2019). Dopamine and cognitive control in prefrontal cortex. Trends in cognitive sciences, 23(3), 213-234.
  18. Groc, L., & Choquet, D. (2020). Linking glutamate receptor movements and synapse function. Science, 368(6496), eaay4631.
  19. Ortega-de San Luis, C., & Ryan, T. J. (2022). Understanding the physical basis of memory: Molecular mechanisms of the engram. Journal of Biological Chemistry, 298(5).
  20. Schmidt, S. I., Blaabjerg, M., Freude, K., & Meyer, M. (2022). RhoA signaling in neurodegenerative diseases. Cells, 11(9), 1520.
  21. E. R. Kandel, J. D. Koester, S. H. Mack, and S. A. Siegelbaum, Principles of Neural Science, 6th ed. New York City : McGraw Hill Professional , 2021.
  22. Wang, C. M., Wu, C. Y., Lin, C. E., Hsu, M. C., Lin, J. C., Huang, C. C., ... & Chiang, H. C. (2023). Forgotten memory storage and retrieval in Drosophila. Nature communications, 14(1), 7153.
  23. Marshall, L., Cross, N., Binder, S., & Dang-Vu, T. T. (2020). Brain rhythms during sleep and memory consolidation: neurobiological insights. Physiology, 35(1), 4-15.
  24. Miry, O., Li, J., & Chen, L. (2021). The quest for the hippocampal memory engram: from theories to experimental evidence. Frontiers in behavioral neuroscience, 14, 632019.
  25. Fan, S., Chen, S., & Lin, L. (2023). Research progress of gut microbiota and obesity caused by high-fat diet. Frontiers in Cellular and Infection Microbiology, 13, 1139800.
  26. Amabebe, E., Robert, F. O., Agbalalah, T., & Orubu, E. S. (2020). Microbial dysbiosis-induced obesity: role of gut microbiota in homoeostasis of energy metabolism. British Journal of Nutrition, 123(10), 1127-1137.
  27. Wang, J., Zhang, W., Li, M., & Li, X. (2021). The new coumarin compound Bis 3 ameliorates cognitive disorder and suppresses brain-intestine-liver systematic oxidative stress in high-fat diet mice. Biomedicine & Pharmacotherapy, 137, 111293.
  28. Lama, A., Pirozzi, C., Severi, I., Morgese, M. G., Senzacqua, M., Annunziata, C., ... & Meli, R. (2022). Palmitoylethanolamide dampens neuroinflammation and anxiety-like behavior in obese mice. Brain, behavior, and immunity, 102, 110-123.
  29. Wohua, Z., & Weiming, X. (2019). Glutaredoxin 2 (GRX2) deficiency exacerbates high fat diet (HFD)-induced insulin resistance, inflammation and mitochondrial dysfunction in brain injury: A mechanism involving GSK-3β. Biomedicine & Pharmacotherapy, 118, 108940.
  30. Lin, M. H., Cheng, P. C., Hsiao, P. J., Chen, S. C., Hung, C. H., Kuo, C. H., ... & Chiou, H. Y. C. (2023). The GLP-1 receptor agonist exenatide ameliorates neuroinflammation, locomotor activity, and anxiety-like behavior in mice with diet-induced obesity through the modulation of microglial M2 polarization and downregulation of SR-A4. International Immunopharmacology, 115, 109653.
  31. Wu, M., Liao, M., Huang, R., Chen, C., Tian, T., Wang, H., ... & Xiao, X. (2022). Hippocampal overexpression of TREM2 ameliorates high fat diet induced cognitive impairment and modulates phenotypic polarization of the microglia. Genes & Diseases, 9(2), 401-414.
  32. Azmi, N. H., Ismail, N., Imam, M. U., Ooi, D. J., Yida, Z., Aziz, A. H. A., & Rosdi, M. N. M. (2023). Germinated brown rice extract reduces brain lipid peroxidation and Aβ levels via regulations of BACE1, RAGE, IDE and LRP1 expressions in high fat/cholesterol diet-fed rats. Journal of Functional Foods, 105, 105587.
  33. Noronha, S. S. R., Lima, P., Campos, G. S. V., Chírico, M. T. T., Abreu, A. R., Figueiredo, A. B. D., ... & De Menezes, R. C. A. (2019). Association of high-fat diet with neuroinflammation, anxiety-like defensive behavioral responses, and altered thermoregulatory responses in male rats. Brain, behavior, and immunity, 80, 500-511.
  34. Afonso-Oramas, D., Santana-Cordón, L., Lemus-Mesa, A., Teixidó-Trujillo, S., Rodríguez-Rodríguez, A. E., Cruz-Muros, I., ... & Barroso-Chinea, P. (2023). Drastic decline in vasoactive intestinal peptide expression in the suprachiasmatic nucleus in obese mice on a long-term high-fat diet. Brain Research Bulletin, 202, 110756.
  35. Agrimi, J., Spalletti, C., Baroni, C., Keceli, G., Zhu, G., Caragnano, A., ... & Lionetti, V. (2019). Obese mice exposed to psychosocial stress display cardiac and hippocampal dysfunction associated with local brain-derived neurotrophic factor depletion. EBioMedicine, 47, 384-401.
  36. Bordeleau, M., de Cossío, L. F., Lacabanne, C., Savage, J. C., Vernoux, N., Chakravarty, M., & Tremblay, M. È. (2021). Maternal high-fat diet modifies myelin organization, microglial interactions, and results in social memory and sensorimotor gating deficits in adolescent mouse offspring. Brain, Behavior, & Immunity-Health, 15, 100281.
  37. Verma, B., Sinha, P., & Ganesh, S. (2022). Ayurvedic formulations amalaki rasayana and rasa sindoor improve age-associated memory deficits in mice by modulating dendritic spine densities. Journal of Ayurveda and Integrative Medicine, 13(4), 100636.
  38. Mäkinen, E., Lensu, S., Honkanen, M., Laitinen, P., Wikgren, J., Koch, L. G., ... & Nokia, M. S. (2021). Rats bred for low intrinsic aerobic exercise capacity link obesity with brain inflammation and reduced structural plasticity of the hippocampus. Brain, behavior, and immunity, 97, 250-259.
  39. Liśkiewicz, A. D., Liśkiewicz, D., Marczak, Ł., Przybyła, M., Grabowska, K., Student, S., ... & Lewin-Kowalik, J. (2021). Obesity-associated deterioration of the hippocampus is partially restored after weight loss. Brain, Behavior, and Immunity, 96, 212-226.
  40. Zhang, Q., Jin, K., Chen, B., Liu, R., Cheng, S., Zhang, Y., & Lu, J. (2022). Overnutrition induced cognitive impairment: insulin resistance, gut-brain axis, and neuroinflammation. Frontiers in Neuroscience, 16, 884579.
  41. Mucellini, A. B., Laureano, D. P., Silveira, P. P., & Sanvitto, G. L. (2019). Maternal and post-natal obesity alters long-term memory and hippocampal molecular signaling of male rat. Brain Research, 1708, 138-145.
  42. Hao, L., Wang, L., Ju, M., Feng, W., Guo, Z., Sun, X., & Xiao, R. (2023). 27-Hydroxycholesterol impairs learning and memory ability via decreasing brain glucose uptake mediated by the gut microbiota. Biomedicine & Pharmacotherapy, 168, 115649.
  43. Xu, J., Ni, B., Ma, C., Rong, S., Gao, H., Zhang, L., ... & Huang, F. (2023). Docosahexaenoic acid enhances hippocampal insulin sensitivity to promote cognitive function of aged rats on a high-fat diet. Journal of Advanced Research, 45, 31-42.
  44. Vander Velden, J. W., & Osborne, D. M. (2022). Prolonged diet-induced obesity modifies DNA methylation and gene expression in the hippocampus. Neuroscience Letters, 780, 136656.
  45. Moreno, F., Méndez, L., Raner, A., Miralles-Pérez, B., Romeu, M., Ramos-Romero, S., ... & Medina, I. (2023). Fish oil supplementation counteracts the effect of high-fat and high-sucrose diets on the carbonylated proteome in the rat cerebral cortex. Biomedicine & Pharmacotherapy, 168, 115708.
  46. Ogrodnik, M., Zhu, Y. I., Langhi, L. G., Tchkonia, T., Krüger, P., Fielder, E., ... & Jurk, D. (2019). Obesity-induced cellular senescence drives anxiety and impairs neurogenesis. Cell metabolism, 29(5), 1061-1077.