Main Article Content


Potato (Solanum tuberosum L.) production in Indonesia increased by 4.21% in 2022 compared to the previous year, but this production is still low by international standards. This is caused by low quality and quantity of potato seeds which is sourced from tubers. It is necessary to modify the in vitro cultivation of potato seed sources by utilising seeds that are often wasted with the addition of cytokinins, such as Benzyl Amino Purine (BAP). The aim of this study was to determine the effect of BAP on potato axillary shoot explants sourced from seeds. The study was conducted using a Completely Randomized Design with one factor, namely BAP concentrations of 0, 1, 2 and 3 ppm with 3 replications. The results showed that there is an influence of BAP on the parameters of shoot growth percentage, leaf and root emergence time, plant height, number of shoots, roots, and leaves of potato axillary buds planlet. The 2 ppm BAP treatment tends to give the best response in increasing the number of shoots with an average of 4.33 shoots, making it effective for producing potato seedlings from axillary buds in vitro.


Cytokinins, multiplication, tissue culture, potato seeds, benzyl amino purine

Article Details

How to Cite
Putri Anugrah Maulidya, Nurchayati Y, Setiari N. The Effect of Benzyl Amino Purine (BAP) On Potato (Solanum tuberosum L.) Axillary Buds Micropropagation. EKSAKTA [Internet]. 2024Mar.30 [cited 2024Apr.22];25(01):81-90. Available from:


  1. Badan Pusat Statistik. (2017). Statistik Tanaman Sayuran dan Buah-buahan Semusim. Badan Pusat Statistik Indonesia. Jakarta.
  2. FAO. (2022). Agricultural Production Statistics 2000-2001. FAOSTAT Analytical Brief Series No. 60. Rome.
  3. Taylor, A., and Dawson, P. (2021). Major Constraints to Potato Production in Indonesia: a Review. American Journal of Potato Research, 98(3), 171–186.
  4. Nascimento, B. W., Mankowska, D. B., and Zarzynska, K. (2020). Challenges in the production of high-quality seed potatoes (Solanum tuberosum L.) in the tropics and subtropics. Agronomy, 10(2), 1-15.
  5. Zehra, R., Moin, S., Syed, Enamullah, M., and Haque, S. E. (2022). Detection and identification of quarantine bacteria and fungi associated with imported and local potato seed tubers. Pakistan Journal of Botany, 54(3), 1157–1161.
  6. Ziraluo, Y. P. B. (2021). Metode Perbanyakan Tanaman Ubi Jalar Ungu (Ipomea batatas Poiret) dengan Teknik Kultur Jaringan atau Stek Planlet. Jurnal Inovasi Penelitian, 2(3), 1037–1046.
  7. Hemmati, N., Cheniany, M., and Ganjeali, A. (2020). Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana Bunge. Botanica Serbica, 44(2), 163–173.
  8. Nowakowska, M., Pavlovic, Z., Nowicki, M., Bogges, S. L., and Trigiano, R. N. (2020). In Vitro Propagation of an Endangered Helianthus verticillatus by Axillary Bud Proliferation. Plants, 9(6), 1–15.
  9. Patuhai, A., Wahab, P. E. M., Yusoff, M. M., Dewir, Y. H.., Alsughayyir, A., and Hakiman, M. (2023). Plant Growth Regulator- and Elicitor-Mediated Enhancement of. Plants, 12(16), 1–11.
  10. Lopez, R. E. M., Escobar, A. O. Q., and Vargas, V. M. L. (2020). Cytokinins, the Cinderella of plant growth regulators. Phytochemistry Reviews, 18(6), 1387–1408.
  11. Shimotohno, A., Aki, S. A., Takashi, N., and Umeda, M. (2021). Regulation of the Plant Cell Cycle in Response to Hormones and the Environment. Annual Review of Plant Biology, 72, 273–296.
  12. Larekeng, S. H., Gusmiaty, G., and Nadhilla, D. (2020). In-Vitro Shoot Induction of Pring Tutul (Bambusa maculata) through in Various Plant Growth Regulators (PGR). IOP Conference Series: Earth and Environmental Science. 575, 1–8.
  13. Khadr, A., Wang, Y. H., Zhang, R. R., Wang, X. R., Xu, Z. S., and Xiong, A. S. (2020) Cytokinin (6-benzylaminopurine) elevates lignification and the expression of genes involved in lignin biosynthesis of carrot. Protoplasma, 257(6), 1507–1517.
  14. Kucerova, Z., Rac, M., Mikulik, J., Plihal, O., Pospisil, P., Bryksova, M., Sedlarova, M., Dolezal, K., and Spundova, M. (2020). The anti-senescence activity of cytokinin arabinosides in wheat and arabidopsis is negatively correlated with ethylene production. International Journal of Molecular Sciences, 21(8109), 1–18.
  15. Bryksová, M., Debravolski, S., Kucerova, Z., Zavadil, K. F., Spundova, M., Plihalova, L., Takac, T., Gruz, J., Hudecek, M., Hlouskova, V., Koprna, R., Novak, O., Strnad, M., Plihal O. D. K. (2020). Aromatic Cytokinin Arabinosides Promote PAMP-like Responses and Positively Regulate Leaf Longevity. ACS Chemical Biology, 15(7), 1949–1963.
  16. Aprilia, M., Setiari, N., and Nurchayati, Y. (2022). Callus Development from Potato (Solanum tuberosum) Stem at Various Concentrations of Benzylaminopurine. Biosaintifika, 14(2), 219–225.
  17. Arafah, D. L., Hernawati, D., and Nuryadin, E. (2021). The Effect Hormone BAP (6-Benzyl Amino Purine) on the Growth of Potato Axillary Shoots (Solanum Tuberosum L.) in Vitro. Jurnal Biologi Tropis, 21(3), 641–647.
  18. Konka, K. H., Gerszberg, A., Jezyna, I. W., Karolak, I. G. (2021). Cytokinin Signaling and De Novo Shoot Organogenesis. Genes, 12(2), 1–20.
  19. Hussain, S., Nanda, S., Zhang, J., Rehmani, M. I. A., Suleman, M., Li, G., and Hou, H. (2021). Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants, 10(8), 1–14.
  20. Handayani, I., Nazirah, L., Ismadi, I., Rusdi, M., and Handayani, R. S. (2020) Pengaruh Konsentrasi Bap Pada Perkecambahan Biji Pamelo Asal Aceh Secara In-Vitro. Jurnal Agrium, 17(2), 149-155.
  21. Kurepa, J. and Smalle, J. A. (2022). Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. International Journal of Molecular Sciences, 23(1933), 1–15.
  22. Meneguzzi, A., Konzen, E. R., Navroski, M. C., Camargo, S. S., Pereira, M. O., Rufato, L., and Lovatel, Q. C. (2019). Shoot multiplication of two Sequoia sempervirens genotypes with addition of small concentrations of kinetin. Pesquisa Florestal Brasileira, 39(1), 1–8.
  23. Emenecker, R. J. and Strader, L. C. (2020). Auxin-abscisic acid interactions in plant growth and development. Biomolecules, 10(2), 1–15.
  24. Du, M., Spalding, E. P., Gray, W. M. (2020). Rapid Auxin-Mediated Cell Expansion. Annual Review of Plant Biology, 71, 379–402.
  25. Maulia, E., Zuyasna, Basyah, B. (2021). Growth of Patchouli Shoots (Pogostemon cablin Benth) with Several Concentrations of Growth Regulator Substances in Vitro. Journal of Agriculture and Veterinary Science, 14(1), 38–46.
  26. Suhartanto, B., Astutik, M., Umami, N., Suseno, N., and Haq, M. S. (2021). The effect of explants and light conditions on callus induction of srikandi putih maize (Zea mays L.). IOP Conference Series: Earth and Environmental Science, 1001, 1–5.
  27. Talitha, O., Sakya, A. T., Hartati, S., Samanhudi, Rahayu, M., Setyawati, A. (2023). Application of BAP and IBA for in Vitro Callus Formation of Biduri (Calotropis gigantea). IOP Conference Series: Earth and Environmental Science, 1246, 1–7.
  28. Li, S. M., Zheng, H. X., Zhang, X. S., and Sui, N. (2021). Cytokinins as central regulators during plant growth and stress response. Plant Cell Reports, 40(2), 271–282.
  29. Cortleven, A., Leuendorf, J. E., Frank, M., Pezzetta, D., Bolt, S., and Schmulling, T. (2019). Cytokinin action in response to abiotic and biotic stresses in plants. Plant Cell and Environment, 42(3), 998–1018.
  30. Kazemiani, S., Azar, A. R. M., Panahadeh, J., Mokhtarzadeh, S., and Ozdemir, F. A. (2018). Shoot Proliferation From Potato (Solanum tuberosum cv. Agria) Under Different Concentration of MS Include Vitamins and BAP Medium. Progress in Nutrition, 20(2), 160–166.
  31. Widhiastuty, N. S., Anwar, S., and Rosyida. (2023). The Effect of PVP ( Polivinil Pirolidon) and BAP (6- benzylamino purine) on Shoots Induction of Teak Plus Perhutani (Tectona grandis). IOP Conference Series: Earth and Environmental Science, 1246, 1–12.
  32. Cheng, L., Wang, D., Wang, Y., Xue, H., Zhang, F. (2020). An integrative overview of physiological and proteomic changes of cytokinin-induced potato (Solanum tuberosum L.) tuber development in vitro. Physiologia Plantarum, 168(3), 675–693.
  33. Syamsiah, M., Imansyah, A. A., Suprapti, H. K., and Badriah, D. S. (2020). Respon Multiplikasi Anggrek Bulan (Phalaenopsis sp.) Terhadap Penambahan Beberapa Konsentrasi BAP (Benzyl Amino Purine) Pada Media In Vitro. Agroscience (Agsci), 10(2), 148-159.
  34. Saidi, A. and Hajibarat, Z. (2021). Phytohormones: plant switchers in developmental and growth stages in potato. Journal of Genetic Engineering and Biotechnology, 19(89), 1–17.
  35. Roychoudhry, S. and Kepinski, S. (2022). Auxin in Root Development. Cold Spring Harbor Perspectives in Biology, 14(4), 1–22.
  36. Gomes, G. L. B. and Scortecci, K. C. (2021). Auxin and its role in plant development: structure, signalling, regulation and response mechanisms. Plant Biology, 23(6), 894–904.
  37. Marquez, G., Alarcon, M. V., and Salguero, J. (2019). Cytokinin Inhibits Lateral Root Development at the Earliest Stages of Lateral Root Primordium Initiation in Maize Primary Root. Journal of Plant Growth Regulation, 38(1), 83–92.
  38. Rivas, M. A., Friero, I., Alarcón, M. V., and Salguero, J. (2022). Auxin-Cytokinin Balance Shapes Maize Root Architecture by Controlling Primary Root Elongation and Lateral Root Development. Frontiers in Plant Science, 13, 1–11.
  39. Zahid, N. A., Jaafar, H. Z. E., and Hakiman, M. (2021). Alterations in microrhizome induction, shoot multiplication and rooting of ginger (Zingiber officinale roscoe) var. bentong with regards to sucrose and plant growth regulators application. Agronomy, 11(320), 1–13.
  40. Bernula, D., Benko, P., Kaszler, N., Domonkos, I., Valkai, I., Szollosi, R., Ferenc, G., Ayaydin, F., Feher, A., and Gemes, K. (2020). Timely removal of exogenous cytokinin and the prevention of auxin transport from the shoot to the root affect the regeneration potential of Arabidopsis roots. Plant Cell, Tissue and Organ Culture, 140(2), 327–339.
  41. Anjarsari, I. R. D., Hamdani, J. S., Suherman, C., Nurmala, T., Khomaeni, H. S., and Rahadi, V. P. (2021). Studi Pemangkasan dan Aplikasi Sitokinin-Giberelin pada Tanaman Teh (Camellia sinensis (L.) O. Kuntze) Produktif Klon GMB 7,” Jurnal Agronomi Indonesia (Indonesian Journal of Agronomy), 49(1), 89–96.
  42. Ngamkham, P., Srilaong, V., Wongs-Aree, C., and Buanong, M. (2023). Application of Cytokinin under Modified Atmosphere (MA) Delays Yellowing and Prolongs the Vase Life of Davallia solida (G. Forst.) Sw. Leaves,” Agriculture (Switzerland), 13(2), 1–18.
  43. Khajeh, C., Fazeli, H., and Mazarie, F. (2021). Effects of Culture Medium and Concentration of Different Growth Regulators on Organogenesis Damask rose (Rosa damascena Mill). J. Plant Bioinform. Biotech, 1(1), 14–27.
  44. Du, M., Daher, F. B., Liu, Y., Steward, A., Tillmann, M., Zhang, X., Wong, J. H., Ren, H., Choen, J. D., Li, C., and Gray, W. M. (2022). Biphasic control of cell expansion by auxin coordinates etiolated seedling development. Science Advances, 8(2), 1–12.
  45. Prasad, R. (2022). Cytokinin and Its Key Role to Enrich the Plant Nutrients and Growth Under Adverse Conditions-An Update. Frontiers in Genetics, 13, 1–14.
  46. Wu, W., Du, K., Kang, X., and Wei, H. (2021). The Diverse Roles of Cytokinins in Regulating Leaf Development. Horticulture Research, 8(1), 1-13.
  47. Qiu, N. W., Jiang, D. C., Wang, X. S., Wang, B. S., and Zhou, F. (2019). Advances in the members and biosynthesis of chlorophyll family. Photosynthetica, 57(4), 974–984.
  48. Gujjar, R. S. and Supaibulwatana, K. (2019). The mode of cytokinin functions assisting plant adaptations to osmotic stresses. Plants, 8(12), 1–18.