Main Article Content

Abstract

Asthma is a disease marked by chronic inflammation of the airways, with indications including wheezing, shortness of breath, and/or cough. As reported by GINA, the global prevalence of asthma is 1-18%. One type of asthma is Allergic asthma which is triggered by allergens, like Der p 1 and Der f 1 which upregulate type II immune response to secret IL-4 and IL-13 to upregulate IgE secretion. IgE binds to FcεRI in mast cells to release mediators that cause hypercontraction, this condition leads to asthma. Meanwhile, anti-inflammatory IL-10 manages IgE production by reducing inflammatory cytokine production and changing isotype switching. IgE Production is a crucial step. Therefore, it is essential to explore the cellular and molecular factors that trigger the regulated isotype-switching IgE and its suppressed mechanism, so this review will explore the biological activity of Der p 1 and Der f I and their contribution to inflammation and the role of anti-inflammation in allergic asthma especially isotype switching IgE We used PRISMA approaches, and tools (RSCB PDB, Uniprot, and SMART). The result appeared Der p 1, and Der f 1 activity have impacts on IL-4, IL-13, IL-10, and IgE secretion.

Keywords

Allergy asthma, isotype switching, IgE, IL-4, IL-13, and IL-10

Article Details

Author Biographies

Anna Rozaliyani, Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

1. Master's Programme in Biomedical Science, Faculty of  Medicine, Universitas Indonesia, Jakarta, Indonesia

2. Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Heri Wibowo, Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

1. Master's Programme in Biomedical Science, Faculty of  Medicine, Universitas Indonesia, Jakarta, Indonesia

2. Department of Parasitology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Triya Damayanti, Departement of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

Departement of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia

How to Cite
1.
Julian, Rozaliyani A, Wibowo H, Damayanti T. Biological Activity of Der p 1 and Der f 1 in Allergic Asthma and Their Contribution in Inflammation and the Role of Anti-inflammation in Allergic Asthma. EKSAKTA [Internet]. 2023Dec.5 [cited 2024Nov.21];23(04):560-73. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/463

References

  1. B. Pekince and A. Baccioglu. (2022). Allergic and non-allergic asthma phenotypes and exposure to air pollution, Journal of Asthma, vol. 59, no. 8, pp. 1509–1520.
  2. Hough KP, Curtiss ML, Blain TJ, Liu R-M, Trevor J, Deshane JS and Thannickal VJ.(2020). Airway Remodeling in Asthma. Front. Med. 7:191.
  3. GINA.(2020). Global strategy for asthma management and prevention (2020 report).
  4. Song, P., Adeloye, D., Salim, H., Dos Santos, J. P., Campbell, H., Sheikh, A., & Rudan, I. (2022). Global, regional, and national prevalence of asthma in 2019: a systematic analysis and modelling study. Journal of global health, 12, 04052.
  5. Pelaia, C., Pelaia, G., Maglio, A., Tinello, C., Gallelli, L., Lombardo, N., Terracciano, R., & Vatrella, A. (2023). Pathobiology of Type 2 Inflammation in Asthma and Nasal Polyposis. Journal of clinical medicine, 12(10), 3371.
  6. Morianos, I., & Semitekolou, M. (2020). Dendritic Cells: Critical Regulators of Allergic Asthma. International journal of molecular sciences, 21(21), 7930.
  7. H. Emran, C. S. E. Chieng, S. Taib, and A. C. Cunningham, “House dust mite sensitisation and association with atopic dermatitis in Brunei, Clinical and Translational Allergy, vol. 9, no. 1, pp. 1–4, 2019, doi: 10.1186/s13601-019-0304-5.
  8. Yuriev, S., Rodinkova, V., Mokin, V., Varchuk, I., Sharikadze, O., Marushko, Y., Halushko, B., & Kurchenko, A. (2023). Molecular sensitization pattern to house dust mites is formed from the first years of life and includes group 1, 2, Der p 23, Der p 5, Der p 7 and Der p 21 allergens. Clinical and molecular allergy: CMA, 21(1), 1.
  9. Lin, Y., Xiao, K., Wang, W., Lu, S., & Wang, Q. (2023). Study on Lowering the Group 1 Protease Allergens from House Dust Mites by Exposing to Todomatsu Oil Atmosphere. Atmosphere, 14(3), 548. MDPI AG.
  10. Soleha, W., & Iswanti, F. C. (2021). Innate Immune Response to House Dust Mite Allergens in Allergic Asthma. Molecular and Cellular Biomedical Sciences, 5(3), 104-14.
  11. Domvri, K., Porpodis, K., Tzimagiorgis, G., Chatzopoulou, F., Kontakiotis, T., Kyriazis, G., & Papakosta, D. (2019). Th2/Th17 cytokine profile in phenotyped Greek asthmatics and relationship to biomarkers of inflammation. Respiratory Medicine, 151, 102-110.
  12. Cernescu, L. D., Haidar, L., & Panaitescu, C. (2021). Dendritic cell‑CD4+ T cell interaction: The differential role of IL‑4/IL‑13 in serum IgE levels in house dust mite allergic patients. Experimental and Therapeutic Medicine, 21(1), 1-1.
  13. Gurgone, D., McShane, L., McSharry, C., Guzik, T. J., & Maffia, P. (2020). Cytokines at the interplay between asthma and atherosclerosis?. Frontiers in Pharmacology, 11, 166.
  14. Lambrecht, B. N., Hammad, H., & Fahy, J. V. (2019). The cytokines of asthma. Immunity, 50(4), 975-991.
  15. Bianchini, R., Karagiannis, S. N., Jordakieva, G., & Jensen-Jarolim, E. (2020). The role of IgG4 in the fine tuning of tolerance in IgE-mediated allergy and cancer. International Journal of Molecular Sciences, 21(14), 5017.
  16. Su, Q., Ren, N., Feng, M., Zeng, X., Dong, Y., Xian, M., Shi, X., Luo, T., Liu, G., & Li, J. (2023). Specific immunoglobulin G4 correlates with Th2 cytokine reduction in patients with allergic asthma treated by Dermatophagoides pteronyssinus subcutaneous immunotherapy. The World Allergy Organization journal, 16(1), 100715.
  17. Sarwar, M. (2020). House dust mites: ecology, biology, prevalence, epidemiology and elimination. In Parasitology and Microbiology Research. (p. 26). IntechOpen.
  18. Huang, H. J., Sarzsinszky, E., & Vrtala, S. (2023). House dust mite allergy: The importance of house dust mite allergens for diagnosis and immunotherapy. Molecular Immunology, 158, 54-67.
  19. Dhaliwal, A. K., & Gill, N. K. (2020). Allergenic co-inhabitants of House Dust. Journal of Scientific Research, 64(2), 66-74.
  20. Bergmann, K. C. (2022). Biology of house dust mites and storage mites. Allergo Journal International, 31(8), 272-278.
  21. Sánchez, J., Calvo, V., Sánchez, A., Díez, S., & Cardona, R. (2017). Sensitization to 10 mites in a tropic area. Der p and Der f are important risk factor for sensitization to other mites from Pyroglyphidae, Acaridae, Chortoglyphidae, and Glyciphagidae families. Revista alergia México, 64(2), 153-162.
  22. Mullen, G. R., & OConnor, B. M. (2019). Mites (Acari). In Medical and veterinary entomology pp. 533-602
  23. Acevedo, N., Zakzuk, J., & Caraballo, L. (2019). House dust mite allergy under changing environments. Allergy, asthma & immunology research, 11(4), 450-469.
  24. Vackova, T., Pekar, S., Klimov, P. B., & Hubert, J. (2023). Population growth and respiration in the dust mite Dermatophagoides farinae under different temperature and humidity regimes. Experimental and Applied Acarology, 89(2), 157-169.
  25. Waldron, R., McGowan, J., Gordon, N., McCarthy, C., Mitchell, E. B., & Fitzpatrick, D. A. (2019). Proteome and allergenome of the European house dust mite Dermatophagoides pteronyssinus. PLoS One, 14(5), e0216171.
  26. Xiong, Q., Wan, A. T. Y., Liu, X., Fung, C. S. H., Xiao, X., Malainual, N., ... & Tsui, S. K. W. (2022). Comparative genomics reveals insights into the divergent evolution of astigmatic mites and household pest adaptations. Molecular Biology and Evolution, 39(5), msac097.
  27. Vrtala, S. (2022). Allergens from house dust and storage mites. Allergo Journal International, 31(8), 267-271.
  28. Hasan-Abad, A. M., Mohammadi, M., Mirzaei, H., Mehrabi, M., Motedayyen, H., & Arefnezhad, R. (2022). Impact of oligomerization on the allergenicity of allergens. Clinical and Molecular Allergy, 20(1), 1-10.
  29. Chruszcz, M., Chapman, M. D., Vailes, L. D., Stura, E. A., Saint-Remy, J. M., Minor, W., & Pomés, A. (2009). Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. Journal of molecular biology, 386(2), 520-530.
  30. Soh, W. T., Zhang, J., Hollenberg, M. D., Vliagoftis, H., Rothenberg, M. E., Sokol, C. L., ... & Jacquet, A. (2023). Protease allergens as initiators–regulators of allergic inflammation. Allergy.
  31. Wang, MS, J., Kang, MS, X., Huang, MS, Z. Q., Shen, MS, L., Luo, MD, Q., Li, MS, M. Y., ... & Ye, J. (2021). Protease-activated receptor-2 decreased zonula occlidens-1 and claudin-1 expression and induced epithelial barrier dysfunction in allergic rhinitis. American Journal of Rhinology & Allergy, 35(1), 26-35.
  32. Ogi, K., Ramezanpour, M., Liu, S., Ferdoush Tuli, J., Bennett, C., Suzuki, M., Fujieda, S., Psaltis, A. J., Wormald, P. J., & Vreugde, S. (2021). Der p 1 Disrupts the Epithelial Barrier and Induces IL-6 Production in Patients With House Dust Mite Allergic Rhinitis. Frontiers in allergy, 2, 692049.
  33. Abu Khweek, A., Kim, E., Joldrichsen, M. R., Amer, A. O., & Boyaka, P. N. (2020). Insights Into Mucosal Innate Immune Responses in House Dust Mite-Mediated Allergic Asthma. Frontiers in immunology, 11, 534501.
  34. Caraballo, L., Valenta, R., Puerta, L., Pomés, A., Zakzuk, J., Fernandez-Caldas, E., Acevedo, N., Sanchez-Borges, M., Ansotegui, I., Zhang, L., van Hage, M., Abel-Fernández, E., Karla Arruda, L., Vrtala, S., Curin, M., Gronlund, H., Karsonova, A., Kilimajer, J., Riabova, K., Trifonova, D., … Karaulov, A. (2020). The allergenic activity and clinical impact of individual IgE-antibody binding molecules from indoor allergen sources. The World Allergy Organization journal, 13(5), 100118.
  35. Choi, Y., Jang, J., & Park, H. S. (2020). Pulmonary Surfactants: a New Therapeutic Target in Asthma. Current allergy and asthma reports, 20(11), 70.
  36. Chevigné, A., & Jacquet, A. (2018). Emerging roles of the protease allergen Der p 1 in house dust mite-induced airway inflammation. The Journal of allergy and clinical immunology, 142(2), 398–400.
  37. Engeroff, P., & Vogel, M. (2021). The role of CD23 in the regulation of allergic responses. Allergy, 76(7), 1981–1989.
  38. Dabbaghzadeh, A., Ghaffari, J., Feridoni, M., & Alipour, A. (2020). House dust mite allergen levels of Der p1 and Der f1 in houses of asthmatic children. Journal of Pediatrics Review, 8(4), 267-274.
  39. Hong, H., Liao, S., Chen, F., Yang, Q., & Wang, D. Y. (2020). Role of IL‐25, IL‐33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy, 75(11), 2794-2804.
  40. Lee, L. Y., Hew, G. S. Y., Mehta, M., Shukla, S. D., Satija, S., Khurana, N., ... & Dua, K. (2021). Targeting eosinophils in respiratory diseases: Biological axis, emerging therapeutics and treatment modalities. Life sciences, 267, 118973.
  41. W. T. Soh et al., (2023). Protease allergens as initiators–regulators of allergic inflammation, Allergy, 2023.
  42. Soh, W. T., Zhang, J., Hollenberg, M. D., Vliagoftis, H., Rothenberg, M. E., Sokol, C. L., ... & Jacquet, A. (2023). Protease allergens as initiators–regulators of allergic inflammation. Allergy.
  43. Yamauchi, K., & Ogasawara, M. (2019). The role of histamine in the pathophysiology of asthma and the clinical efficacy of antihistamines in asthma therapy. International journal of molecular sciences, 20(7), 1733.
  44. Banafea, G. H., Bakhashab, S., Alshaibi, H. F., Natesan Pushparaj, P., & Rasool, M. (2022). The role of human mast cells in allergy and asthma. Bioengineered, 13(3), 7049-7064.
  45. Shamji, M. H., Valenta, R., Jardetzky, T., Verhasselt, V., Durham, S. R., Würtzen, P. A., & van Neerven, R. J. (2021). The role of allergen‐specific IgE, IgG and IgA in allergic disease. Allergy, 76(12), 3627-3641.
  46. Marone, G., Granata, F., Pucino, V., Pecoraro, A., Heffler, E., Loffredo, S., ... & Varricchi, G. (2019). The intriguing role of interleukin 13 in the pathophysiology of asthma. Frontiers in pharmacology, 10, 1387.
  47. Pelaia, C., Heffler, E., Crimi, C., Maglio, A., Vatrella, A., Pelaia, G., & Canonica, G. W. (2022). Interleukins 4 and 13 in asthma: Key pathophysiologic cytokines and druggable molecular targets. Frontiers in Pharmacology, 13, 851940.
  48. Hadebe, S., Khumalo, J., Mangali, S., Mthembu, N., Ndlovu, H., Scibiorek, M., ... & Brombacher, F. (2021). Deletion of IL-4Rα signaling on B cells limits hyperresponsiveness depending on antigen load. Journal of Allergy and Clinical Immunology, 148(1), 99-109.
  49. Aranda, C. J., & de Lafaille, M. A. C. (2019). The secret life of IgE-producing cells. Immunity, 50(2), 285-287.
  50. Abbas, A. K., Lichtman, A. H., & Pillai, S. (2019). Basic immunology e-book: functions and disorders of the immune system. Elsevier Health Sciences.
  51. Chen, Z., & Wang, J. H. (2019). Signaling control of antibody isotype switching. Advances in immunology, 141, 105-164.
  52. Sutton, B. J., Davies, A. M., Bax, H. J., & Karagiannis, S. N. (2019). IgE antibodies: from structure to function and clinical translation. Antibodies, 8(1), 19.
  53. Godwin, L., Sinawe, H., & Crane, J. S. (2019). Biochemistry, Immunoglobulin E. In: StatPearls. StatPearls Publishing, Treasure Island (FL); 2022, 31082102.
  54. Kariyawasam, H. H., & James, L. K. (2020). Chronic Rhinosinusitis with Nasal Polyps: Targeting IgE with Anti-IgE Omalizumab Therapy. Drug design, development and therapy, 14, 5483–5494.
  55. Ismail, A., Iwuji, K., & Tarbox, J. (2019). Immunoglobulin E associated systemic conditions. The Southwest Respiratory and Critical Care Chronicles, 7(30), 29-35.
  56. Plattner, K., Bachmann, M. F., & Vogel, M. (2023). On the complexity of IgE: The role of structural flexibility and glycosylation for binding its receptors. Frontiers in allergy, 4, 1117611.
  57. Arthur, G. K., & Cruse, G. (2022). Regulation of trafficking and signaling of the high affinity IgE receptor by FcεRIβ and the potential impact of FcεRIβ splicing in allergic inflammation. International Journal of Molecular Sciences, 23(2), 788.
  58. Kanagaratham, C., El Ansari, Y. S., Lewis, O. L., & Oettgen, H. C. (2020). IgE and IgG antibodies as regulators of mast cell and basophil functions in food allergy. Frontiers in immunology, 11, 3000.
  59. Travers, T., Kanagy, W. K., Mansbach, R. A., Jhamba, E., Cleyrat, C., Goldstein, B., ... & Gnanakaran, S. (2019). Combinatorial diversity of Syk recruitment driven by its multivalent engagement with FcεRIγ. Molecular Biology of the Cell, 30(17), 2331-2347.
  60. Catalán, D., Mansilla, M. A., Ferrier, A., Soto, L., Oleinika, K., Aguillón, J. C., & Aravena, O. (2021). Immunosuppressive mechanisms of regulatory B cells. Frontiers in immunology, 12, 611795.
  61. Yao, Z., & Fu, Y. (2021). Glycyrrhizic acid restrains airway inflammation and remodeling in asthma via the TGF‑β1/Smad signaling pathway. Experimental and Therapeutic Medicine, 21(5), 1-9.
  62. Athari, S. S. (2019). Targeting cell signaling in allergic asthma. Signal Transduction and Targeted Therapy, 4(1), 45.
  63. Krueger, J. G., McInnes, I. B., & Blauvelt, A. (2022). Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. Journal of the American Academy of Dermatology, 86(1), 148-157.
  64. Saraiva, M., Vieira, P., & O’garra, A. (2019). Biology and therapeutic potential of interleukin-10. Journal of Experimental Medicine, 217(1), e20190418.
  65. Schülke, S. (2018). Induction of interleukin-10 producing dendritic cells as a tool to suppress allergen-specific T helper 2 responses. Frontiers in immunology, 9, 455.
  66. Trampert, D. C., Hubers, L. M., van de Graaf, S. F., & Beuers, U. (2018). On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1864(4), 1401-1409.