Main Article Content

Abstract

The growing AMR issue affects the current antimicrobial therapy recommendations, particularly for broad-spectrum antibiotics, like third-generation cephalosporins (3GC) and fluoroquinolones (FQ). Actually, the inappropriate use of both antibiotics in clinical and community settings increase the resistance of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-Ec). Although ESBL-Ec is used as a surveillance indicator of bacterial resistance, but currently studies related to 3GC-FQ co-resistance among clinical and community (including human and wastewater samples) based ESBL-Ec isolation, have not been widely carried out. The objective of this study was to analyze the possibility and mechanism of 3GC-FQ co-resistance among ESBL-Ec, in human clinical and communal isolates from previous published research. Out of 257 articles screened, four studies in accordance with our study are included in the analysis. The result indicated that ESBL-Ec derived from all sample sources had 3GC-FQ co-resistance. According to two studies reviewed, blaCTX-M was the most predominant ESBL gene, while the FQ-associated resistant gene dominated by qnr family genes. Resistant genes and co-resistant ESBL-Ec can be spread rapidly through plasmids.

Keywords

co-resistance fluoroquinolones ESBL Escherichia coli

Article Details

How to Cite
1.
Febrianti T, Puspandari N, Karuniawati A. Third-Generation cephalosporins (3GC) and Fluoroquinolones (FQ) Co-Resistance in Extended-Spectrum Beta-Lactamase-Producing Escherichia coli (ESBL-Ec) from Clinical and Community Isolates . EKSAKTA [Internet]. 2023Dec.30 [cited 2024May9];23(04):537-48. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/462

References

  1. Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019 : a systematic analysis. The Lancet, 399, 629-655.
  2. The Coordinating Minister for Human Development and Cultural Affairs of The Republic of Indonesia. (2021). National Action Plan on Antimicrobial Resistance Control 2020-2024. 7(1-61).
  3. White, R. T. (2021). Escherichia coli : placing resistance to third-generation cephalosporins and fluoroquinolones in Australia and New Zealand into perspective. Microbiology Australia, 42, 104–110.
  4. Wu, H., Yi, C., Zhang, D, Guo, Q., Lin, J., Mao, H., Huang, F., Yu, X., and Yang., X. (2022). Changes of antibiotic resistance over time among Escherichia coli peritonitis in Southern China. Peritoneal Dialysis International, 42(2), 218–222.
  5. Limato, R., Lazarus, G., Dernison, P., Mudia, M., Alamanda, M., Nelwan, E. J., and Sinto, R. (2022). Optimizing antibiotic use in Indonesia : a systematic review and evidence synthesis to inform opportunities for intervention. The Lancet Regional Health-Southeasts Asia, 2(6), 1-23.
  6. World Health Organization. (2021). Antimicrobial resistance. Retrieved from WHO official website. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 22 March 2023.
  7. Cooke, J. (2022). Antimicrobial resistance : a major priority for global focus. Eur J Hosp Pharm. 29(2), 63–64.
  8. Kolozsvári, L. R., Kónya, J., Paget, J., Schellevis, F. G., Sándor, J., Sz, J., Harsányi, S., Jancsó, Z., and Rurik, I. (2019). Patient-related factors, antibiotic prescribing and antimicrobial resistance of the commensal Staphylococcus aureus and Streptococcus pneumoniae in a healthy population-Hungarian results of the APRES study. BMC infectious diseases, 19(1), 1-8.
  9. Batenburg, D., Verheij, T., Van't Veen, A., and van der Velden, A. (2020). Practice-Level Association between Antibiotic Prescribing and Resistance: An Observational Study in Primary Care. Antibiotics, 9(8), 1-8.
  10. Sriyapai, T., Pulsrikarn, C., Chansiri, K., and Sriyapai, P. (2022). Molecular characterization of extended-spectrum cephalosporin and fluoroquinolone resistance genes in Salmonella and Shigella isolated from clinical specimens in Thailand. Heliyon, 8(12), 1-8.
  11. Lewis, J. M., Mphasa, M., Banda, R., Beale, A.M., Mallewa. J., Heinz, E., Thomson, R., and Feasey, N. (2022). Genomic and antigenic diversity of colonizing Klebsiella pneumoniae isolates mirrors that of invasive isolates in Blantyre, Malawi. Microbial Genomics, 8(000778), 1–14.
  12. Bitew, A., Adane, A., and Abdeta, A. (2023). Bacteriological spectrum, extended‑spectrum β‑lactamase production and antimicrobial resistance pattern among patients with bloodstream infection in Addis Ababa. Scientific Reports, 13(2071), 1–11.
  13. World Health Organization. (2017). WHO integrated global survey on ESBL-producing E. coli using a one health approach: implementation and opportunities. The Tricycle Project (Protocol V). Geneva: World Health Organization.
  14. Gasparrini, A. J., Markley, J. L., Kumar, H., Wang, B., Fang, L., Irum, S., Symister, C. T., Wallace, M., Burnham, C., Andleeb, S., Tolia, N. H., Wencewicz, T. A., and Dantas, G. (2020). Tetracycline-inactivating enzymes from environmental, human commensal, and pathogenic bacteria cause broad-spectrum tetracycline resistance. Communications Biology, 3(1), 1-12.
  15. Halaji, M., Shahidi, S., Atapour, A., Ataei, B., Feizi, A., and Havaei, S. A. (2020). Characterization of extended-spectrum beta-lactamase-producing uropathogenic Escherichia coli among Iranian kidney transplant patients. Infection and drug resistance, 13, 1429–1437.
  16. Shibuki, R., Nishiyama, M., Mori, M., Baba, H., Kanamori, H., and Watanabe, T. (2023). Characterization of extended-spectrum beta-lactamase-producing Escherichia coli isolated from municipal and hospital wastewater in Japan. Journal of global antimicrobial resistance, 32, 145–151.
  17. Demirci, M., Unlu, O., and Tosun, A. I. (2019). Detection of O25b-ST131 clone, CTX-M-1 and CTX-M-15 genes via real-time PCR in Escherichia coli strains in patients with UTIs obtained from a university hospital in Istanbul. Journal of Infection and Public Health, 12, 640–644.
  18. Sewunet, T., Asrat, D., Woldeamanuel, Y., Ny, S., Westerlund, F., Aseffa, A., and Giske, C. G. (2022). Polyclonal spread of blaCTX-M-15 through high-risk clones of Escherichia coli at a tertiary hospital in Ethiopia. Journal of Global Antimicrobial Resistance, 29, 405–412.
  19. The European Committee on Antimicrobial Susceptibility Testing. (2023). EUCAST technical guidance on the use of the combination disk test (CDT) for confirmation of ESBL in Enterobacterales. Retrieved from EUCAST official website. https://www.eucast.org/eucastguidancedocuments. Accessed 17 July 2023.
  20. CLSI. (2020). Performance Standards for Antimicrobial Susceptibility Testing. West Valley Road: CLSI.
  21. Young, A. L., Nicol, M. P., Moodley, C., and M.Bamford, C. (2019). The accuracy of extended-spectrum beta-lactamase detection in Escherichia coli and Klebsiella pneumoniae in South African laboratories using the Vitek 2 Gram-negative susceptibility card AST-N255. S Afr J Infect Dis, 34(1), 1–6.
  22. Temkin, E., Benito, J. T.-C. B. B. N., Mora-rillo, M., Navas, E., Osthoff, M., Pozo, C., Carlos, J., Ramos, R., Rodriguez, M., and Sánchez-garcía, M. (2017). Ceftazidime-Avibactam as Salvage Therapy for Infections Caused by Carbapenem-Resistant Organisms. Antimicrobial Agents and Chemotherapy, 61(2), 1-7.
  23. Kongnakorn, T., Eckmann, C., Bassetti, M., Tichy, E., Di Virgilio, R., Baillon-Plot, N., and Charbonneau, C. (2019). Cost-effectiveness analysis comparing ceftazidime/avibactam (CAZ-AVI) as empirical treatment comparing to ceftolozane/tazobactam and to meropenem for complicated intra-abdominal infection (cIAI). Antimicrobial resistance and infection control, 8, 1-18.
  24. Pishtiwan, A. H., and Khadija, K. M. (2019). Prevalence of blaTEM, blaSHV, and blaCTX-M genes among ESBL-producing Klebsiella pneumoniae and Escherichia coli Isolated from Thalassemia Patients in Erbil, Iraq. Mediterranean Journal of Hematology and Infectious Diseases, 11(1), 1-7.
  25. Zhang, Y. L., Huang, F., Gan, L., Cai, D., Fang, J., Zhong, Z., Guo, H., Xie. Y., Yi. J., Wang, Z., and Zuo, Z. (2021). High prevalence of blaCTX‑M and blaSHV among ESBL producing E. coli isolates from beef cattle in China’s Sichuan‑Chongqing Circle. Scientific Reports. 11(13725), 1–9.
  26. Gundran, R. S., Cardenio, P. A., Villanueva, M. A., Sison, F. B., Benigno, C. C., Kreausukon, K., Pichpol, D., and Punyapornwithaya, V. (2019). Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended-spectrum beta-lactamase-producing E. coli isolates from broiler farms in the Philippines. BMC Veterinary Research, 15:227(1), 1–8.
  27. Nachimuthu, R., Kannan, V. R., Bozdogan, B., Krishnakumar, V., and S, K. P. (2021). CTX-­M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India. Microbiology Society, 3, 1–8.
  28. Bastidas-Caldes, C., Romero-Alvarez, D., Valdez-Vélez, V., Morales, R. D., Montalvo-Hernández, A., Gomes-Dias, C., and Calvopiña, M. (2022). Extended-Spectrum beta-lactamases producing Escherichia coli in South America: a systematic review with a one Health perspective. Infection and drug resistance, 15, 5759–5779.
  29. Day, M. J., Hopkins, K. L., Wareham, D. W., Toleman, M. A., Elviss, N., Randall, L., Teale, C., Cleary, P., Wiuff, C., Doumith, M., Ellington, M. J., Woodford, N., and Livermore, D. M. (2019). Extended-spectrum beta-lactamase-producing Escherichia coli in human-derived and foodchain-derived samples from England, Wales, and Scotland: an epidemiological surveillance and typing study. The Lancet. Infectious diseases, 19(12), 1325–1335.
  30. Takizawa, S., Soga, E., Hayashi, W., Sakaguchi, K., Koide, S., Tanabe, M., Denda, T., Sugawara, Y., Yu, L., Kayama, S., Sugai, M., Nagano, Y., and Nagano, N. (2022). Genomic landscape of blaGES-5 and blaGES-24 harboring Gram-negative bacteria from hospital wastewater: emergence of class 3 integron-associated blaGES-24 genes. Journal of global antimicrobial resistance, 31, 196–206.
  31. Castanheira, M., Simner, P. J., & Bradford, P. A. (2021). Extended-spectrum beta-lactamases: an update on their characteristics, epidemiology and detection. JAC-antimicrobial resistance, 3(3), 1-21.
  32. Jeanvoine, A., Bouxom, H., Leroy, J., & Gbaguidi-haore, H. (2020). Resistance to third-generation cephalosporins in escherichia coli in the french community, the times they are a-changin’?. International Journal of Antimicrobial Agents, 5(55), 1-16.
  33. Kotb, D.N., Mahdy, W.K., Mahmoud, M.S., and Khairy, R.M. (2019). Impact of co-existence of PMQR genes and QRDR mutations on fluoroquinolones resistance in Enterobacteriaceae strains isolated from community and hospital acquired UTIs. BMC Infect Dis, 19(979), 1-9.
  34. Gockel, J. (2020). Deciphering regulatory mechanism influencing qepA efflux pump expression in Escherichia coli. Sweden: Uppsala.
  35. Kariuki, K., Diakhate, M. M., Musembi, S., Belanger, S. N. T., Rwigi, D., Mutuma, T., Mutuku, E., Tickell, K. D., Soge, O. O., Singa, B. O., Walson, J. L., Pavlinac, P. B., and Kariuki, S. (2023). Plasmid‑mediated quinolone resistance genes detected in ciprofloxacin non‑susceptible Escherichia coli and Klebsiella isolated from children under five years at hospital discharge, Kenya. BMC Microbiol, 23(129), 1–11.
  36. Lee, S., Park, N., Yun, S., Hur, E., Song, J., Lee, H., Kim, Y., and Ryu, S. (2021). Presence of plasmid-mediated quinolone resistance (PMQR) genes in non-typhoidal Salmonella strains with reduced susceptibility to fluoroquinolones isolated from human salmonellosis in Gyeonggi-do, South Korea from 2016 to 2019. Gut pathogens, 13(1), 1-35.
  37. Li, J., Zhang., H., Ning, J., Sajid, A., Cheng, G., Yuan, Z., and Hao, H. (2019). The nature and epidemiology of OqxAB, a multidrug efflux pump. Antimicrob. Resist. Infect. Control, 8(44), 1–13.
  38. Chen, X., Zhang, W., Pan, W., Yin, J., Pan, Z., Gao, S., and Jiao, X. (2012). Prevalence of qnr, aac(6′)-Ib-cr, qepA, and oqxAB in Escherichia coli Isolates from Humans, Animals, and the Environment. Antimicrobial Agents and Chemotherapy, 56(6), 3423-3427.
  39. Amin, M. B., Saha, S. R., Islam, M. R., Haider, S. M. A., Hossain, M. I., Chowdhury, A. S. M. H. K., Rousham, E. K., and Islam, M. A. (2021). High prevalence of plasmid-mediated quinolone resistance (PMQR) among E. coli from aquatic environments in Bangladesh. PloS one, 16(12), 1-15.
  40. Brandis, G., Gockel, J., Garoff, L., Guy, L., and Hughes, D. (2021). Expression of the qepA1 gene is induced under antibiotic exposure. Journal of Antimicrobial Chemotherapy, 76(6), 1433-1440.
  41. Atac, N., Kurt-Azap, O., Dolapci, I., Yesilkaya, A., Ergonul, O., Gonen, M., and Can, F. (2018). The Role of AcrAB-TolC Efflux Pumps on Quinolone Resistance of E. coli ST131. Current microbiology, 75(12), 1661–1666.
  42. National Library of Medicine National Center for Biotechnology Information (NCBI). (2023). Polymerase Chain Reaction (PCR). https://www.ncbi.nlm.nih.gov/probe/docs/techpcr/. Accessed 17 July 2023.
  43. Moghnia, O., & Al-sweih, N.A. (2022). Whole genome sequence analysis of multidrug resistant Escherichia coli and Klebsiella pneumoniae strains in Kuwait. Microorganisms. 10(507), 1-11.
  44. Mandal, S. M., & Paul, D. (2019). Bacterial adaptation to co-resistance. S. M. Mandal and D. Paul, Eds., Singapore: Springer Nature Pte Ltd.
  45. Liu, X., Li, X., Yang, A. W., Tang, B., Jian, Z. J., Zhong, Y. M., Li, H. L., Li, Y. M., Yan, Q., Liang, X. H., & Liu, W. E. (2022). Community fecal carriage and molecular epidemiology of extended-Spectrum beta-lactamase and carbapenemase-producing Escherichia coli from healthy children in the Central South China. Infection and drug resistance, 15, 1601–1611.