Main Article Content

Abstract

Melinjo leaves (Gnetum gnemon) have been used traditionally in Maluku to treat spoilage in the fish product. Melinjo leaves contain secondary metabolites with anti-inflammatory and antibacterial biological activities. It has been identified contain gnetumal, callyspinol, cassipuorol, (+)-dehydrovomifoliol, p-coumaric acid, ferulic acid, isovitexin, swersitin, isoswersitin, vicenin 2, swertiajaponin, isoswertiajaponin and ursolic acid. This research aims to predict the potential of the compounds in melinjo leaves as antihistamines by inhibiting the activity of the acetylcholine muscarinic M3 receptor. The research was carried out using an in silico study method using a molecular docking approach. Docking results showed that gnetumal, callyspinol, cassipuorol, (+)-dehydrovomifoliol, p-coumaric acid, ferulic acid, isovitexin, swersitin, isoswersitin, vicenin 2, swertiajaponin, isoswertiajaponin and ursolic acid for the muscarinic acetylcholine receptor M3 had a binding affinity value of -7.4, -8.0, 7.0, 7.0, -6.6, -6.6, -7.4, -5.7, -4.4, -3.7, -6.0, -4.9 and -4.7 kcal/mol, respectively.

Keywords

antihistamine melinjo molecular docking

Article Details

How to Cite
1.
Gaspersz N, Amos MAH, Male YT, Baharudin MDA, Leuwol DY, El R, Pattiasina PM, Sohilait MR, Herland Satriawan. The Potential of Active Compounds from Melinjo Leaves (Gnetum gnemon) as an Antihistamine using Molecular Docking Approach for Acetylcholine Muscarinic M3 Receptor Inhibition. EKSAKTA [Internet]. 2023Dec.30 [cited 2024Nov.21];23(04):549-5. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/460

References

  1. F. Monczor and N. Fernandez. (2016). Current Knowledge and Perspectives on Histamine H1 and H2 Receptor Pharmacology: Functional Selectivity, Receptor Crosstalk, and Repositioning of Classic Histaminergic Ligands, Mol Pharmacol, vol. 90, no. 5, pp. 640–648.
  2. K. L. Randall and C. A. Hawkins. (2018). Antihistamines and Allergy, Aust Prescr, vol. 41, no. 2, pp. 42–45.
  3. N. Ghamari, O. Zarei, D. Reiner, S. Dastmalchi, H. Stark, and M. Hamzeh‐Mivehroud. (2019). Histamine H3 Receptor Ligands by Hybrid Virtual Screening, Docking, Molecular Dynamics simulations, and Investigation of their Biological Effects, Chem Biol Drug Des, vol. 93, no. 5, pp. 832–843.
  4. A. R. Mugni and A. N. Hasanah. (2018). Artikel Tinjauan: Fitosom sebagai Sistem Penghantar Obat Transdermal Formulasi Baru Obat Herbal untuk Perkembangan Farmasetika di Indonesia, Farmaka, vol. 16, no. 1, pp. 61–71.
  5. S. Shavira, A. D. Margaretta, A. D. Sandra, R. U. Sitorus, and F. Fatmaria. (2021). Formulasi dan Uji Stabilitas Sediaan Suspensi Ekstrak Rimpang Zingiber zerumbet, HMJ, vol. 4, no. 4, pp. 7–13.
  6. N. Gaspersz, E. G. Fransina, and A. R. Ngarbingan. (2022). Uji Aktivitas Penghambatan Enzim α-Amilase dan Glukoamilase dari Ekstrak Etanol Daun Kirinyuh (Chromolaena odorata L.), J. Kim. Mul, vol. 19, no. 2, pp. 51–57.
  7. N. Gaspersz, M. A. H. Amos, S. H. Kalauw, I. Harjuni, and M. R. Sohilait. (2022). Penambatan Molekuler Penghambatan Aktivitas Enzim α-Amilase dan α-Glukosidase oleh Senyawa Aktif Daun Kirinyuh (Chromolaena odorata L.), Kovalen, vol. 8, no. 3, pp. 230–237,
  8. N. Gaspersz, A. R. Ngarbingan, W. O. Apriana, and S. L. L. Silayar. (2023). Study of Utilization of Kirinyuh Leaf Extract (Chromolaena odorata) as Antidiabetic Plaster: Phytochemical Screening and in-Vivo Test, in The 7th International Conference on Basic Sciences 2021, Ambon, Indonesia: AIP, Jan. 2023, pp. 1–10.
  9. B. Bustanussalam, D. Apriasi, E. Suhardi, and D. Jaenudin. (2015). Efektivitas Antibakteri Ekstrak Daun Sirih (Piper betle Linn) Terhadap Staphylococcus aureus ATCC 25923, JF, vol. 5, no. 2, pp. 58–64.
  10. E. Kining, D. Firdiani, and S. Asma. (2022). Aktivitas Antibakteri dan Antibiofilm Ekstrak Air Daun Melinjo terhadap Bakteri Pseudomonas aeruginosa, Indonesia Natural Research Pharmaceutical Journal, vol. 7, no. 1, pp. 19–33.
  11. P. P. Dutta et al. (2018). Antiplasmodial Activity of Gnetum gnemon Leaves and Compounds Isolated from Them, Natural Product Communications, vol. 13, no. 10, pp. 1263–1265.
  12. Y. D. I. Siregar et al. (2016). Extraction of Isovitexin from Melinjo (Gnetum gnemon L.) Leaves Using Mixtures of Liquid Carbon Dioxide and Ethanol. International Journal of Biomass & Renewables, vol. 5, no. 2, pp. 23–30.
  13. J. W. Wallace and G. Morris. (1978). C-Glycosylflavones in Gnetum gnemon, Phytochemistry, vol. 17, no. 10, pp. 1809–1810.
  14. T. H. Le, T. N. Van Do, H. X. Nguyen, P. H. Dang, N. T. Nguyen, and M. T. T. Nguyen. (2012). A New Phenylheptanoid from the Leaves of Gnetum gnemon L. Natural Product Research, vol. 35, no. 21, pp. 3999–4004.
  15. L. A. Vu, P. T. C. Quyen, and N. T. Huong. (2015). In silico Drug Design: Prospective for Drug Lead Discovery, IJESI, vol. 4, no. 10, pp. 60–70.
  16. G. Monika, G. Punam, and S. Sarbjot. (2010). An Overview on Molecular Docking, IJDDR, vol. 2, no. 2, pp. 219–231.
  17. M. R. Sohilait, H. D. Pranowo, and W. Haryadi. (2017). Molecular Docking Analysis of Curcumin Analogues with COX-2, Bioinformation, vol. 13, no. 11, pp. 356–359.
  18. A. C. Kruse et al. (2012). Structure and Dynamics of the M3 Muscarinic Acetylcholine Receptor, Nature, vol. 482, no. 7386, pp. 552–556.
  19. D. Ghersi and R. Sanchez. (2009). Improving Accuracy and Efficiency of Blind Protein-Ligand Docking by Focusing on Predicted Binding Sites, Proteins, vol. 74, no. 2, pp. 417–424.
  20. S. Shityakov and C. Foerster. (2014). In Silico Structure-Based Screening of Versatile P-Glycoprotein Inhibitors Using Polynomial Empirical Scoring Functions, AABC, vol. 2014, no. 7, pp. 1–9, Mar.
  21. O. Trott and A. J. Olson. (2010). AutoDock Vina: Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, J. Comput. Chem., vol. 31, no. 2, pp. 455–461.
  22. K. Shah, S. Mujwar, J. K. Gupta, S. K. Shrivastava, and P. Mishra. (2019). Molecular Docking and In Silico Cogitation Validate Mefenamic Acid Prodrugs as Human Cyclooxygenase-2 Inhibitor, ASSAY and Drug Development Technologies, vol. 17, no. 6, pp. 285–291.
  23. N. Gaspersz and M. R. Sohilait. (2019). Penambatan Molekuler α, β, dan γ-Mangostin sebagai Inhibitor α-Amylase Pankreas Manusia, Indo. J. Chem. Res., vol. 6, no. 2, pp. 59–66.
  24. M. J. A. Bernaldez, J. B. Billones, and A. Magpantay. (2018). In Silico Analysis of Binding Interactions between GSK983 and Human DHODH through Docking and Molecular Dynamics, AIP Conference Proceedings, vol. 2045, no. 1, pp. 1–8.
  25. S. G. Krimmer, J. Cramer, J. Schiebel, A. Heine, and G. Klebe. (2017). How Nothing Boosts Affinity: Hydrophobic Ligand Binding to the Virtually Vacated S1′ Pocket of Thermolysin, J. Am. Chem. Soc., vol. 139, no. 30, pp. 10419–10431.
  26. D. Paik, H. Lee, H. Kim, and J.-M. Choi. (2022). Thermodynamics of π–π Interactions of Benzene and Phenol in Water, IJMS, vol. 23, no. 17, p. 9811.
  27. S. Chigurupati et al. (2022). Molecular Docking of Phenolic Compounds and Screening of Antioxidant and Antidiabetic Potential of Moringa oleifera Ethanolic Leaves Extract from Qassim Region, Saudi Arabia, Saudi Journal of Biological Sciences, vol. 29, no. 2, pp. 854–859.
  28. G. A. Gyebi et al. (2021). Structure-Based Virtual Screening Suggests Inhibitors of 3-Chymotrypsin-Like Protease of SARS-CoV-2 from Vernonia amygdalina and Occinum gratissimum, Computers in Biology and Medicine, vol. 136, no. 1, pp. 1–16.
  29. M. Simončič and T. Urbic. (2018). Hydrogen Bonding Between Hydrides of the Upper-Right Part of the Periodic Table, Chemical Physics, vol. 507, no. 1, pp. 34–43.
  30. Y. Jin et al. (2023). Sulfur–Arene Interactions: the S⋯π and S–H⋯π Interactions in the Dimers of Benzofuran⋯Sulfur Dioxide and Benzofuran⋯Hydrogen Sulfide, Phys. Chem. Chem. Phys., vol. 25, no. 17, pp. 12174–12181.
  31. A. L. Ringer, A. Senenko, and C. D. Sherrill. (2007). Models of S/π Interactions in Protein Structures: Comparison of the H2S-Benzene Complex with PDB Data,”Protein Sci., vol. 16, no. 10, pp. 2216–2223.
  32. L. F. Fraga and L. L. Borges. (2020). Busca De Moléculas Com Atividade Broncodilatadora Na Espécie Mikania Glomerata Spreng Empregando Ferramentas in Silico, RBMC, vol. 6, no. 15, pp. 25–31.