Main Article Content

Abstract

Minimizing ship noise and vibrations is crucial due to  potentially severe consequences, such as communication problems, sleep disturbances, stress, and structural damage. To address this, effective dampers are necessary. Many soundproofing materials now utilize natural fiber waste to replace synthetic materials, which are harmful to environment. One underutilized natural fiber is tofu dregs, which contain fibers suitable for sound absorption. This study investigates using tofu dregs as a composite material in sound-dampening applications. Composites are materials engineered from two or more substances with different properties to create a heterogeneous mixture. In this research, sound-dampening composites were developed using tofu dregs combined with carbon black and talc duco. The study found that the composite containing 60 grams of tofu dregs, 60 grams of talc duco, and 50 grams of resin achieved a sound absorption coefficient of α = 0.19. Meanwhile, the composite with 60 grams of tofu dregs, 50 grams of carbon black, and 50 grams of resin achieved a higher sound absorption coefficient of α = 0.24. These results indicate that the tofu dregs and carbon black composite offer superior sound absorption compared to tofu dregs and talc duco composite, demonstrating potential of tofu dregs as an eco-friendly soundproofing material.

Keywords

Natural Fiber, Composite, Tofu Dregs, Sound, Absorption

Article Details

How to Cite
1.
Aurista Miftahatul Ilmah, Anauta Lungiding Angga Risdianto, Belgis Risky Wijaya, Arief Syarifuddin, Triyanti Irmiyana, Taufan Prasetyo, Muhammad Arus Samudera, Mohammad Hamid. Analysis of The Effect of Soundproofing on Ship Engines Based on Composite Materials Made from Tofu Dregs (Glycine Max L Merill). EKSAKTA [Internet]. 2024Sep.30 [cited 2024Oct.12];25(03):302-10. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/436

References

  1. Maharsi, A., Hidayat, D., Gedalya, V., & Noviandri, P. (2019). Pelepah pisang sebagai alternatif material dalam mengurangi suara. In SMART: Seminar on Architecture Research and Technology (Vol. 4, No. 1, pp. 31-40).
  2. Permata, T., Hikmawati, D., & Ilmah, A. M. (2020). Utilization of bagasse and sawdust as bio-based insulation on the walls of the ship’s accommodation ceiling. Ecology, Environment and Conservation, 26, S135-S139.
  3. Agustiarini, V., Fitri, S. P., & Baheramsyah, A. (2023). Desain Struktur Dinding Palka Kapal Ikan Dengan Lapisan Insulasi Berbahan Sabut Kelapa. Jurnal Teknik ITS, 12(1), G21-G27.
  4. Ayyaswamy, J. P. K., Sattanathan, S., Ramachandran, B., & Nadarajan, M. (2019). Banana Stem Based Activated Carbon as Filler in Polymer Composites for Automobile Applications.
  5. Temesgen, A. G. (2021). A research on the use of enset woven fabric structures for the applications of sound absorption and biodegradable composite material development (Doctoral dissertation, Bursa Uludag University (Turkey)).
  6. Pratiwi, P., & Yanto, A. (2023). Characterization of Sound Absorption Coefficient and Acoustic Impedance of Palm Frond Fiber Composites with Pine Resin on Various Composition Variations. Jurnal Teknik Mesin, 13(1), 6-12.
  7. Khem, S., Sutikno, S., Suwarta, P., & Istana, B. (2023). Experimental Study of Sound Absorption Coefficient Characteristics of Oil Palm Frond Reinforced Composite. Key Engineering Materials, 941, 257-263.
  8. Muhdar, M., Sari, C. P., Arrishala, B. M., & Bilhaq, G. M. (2024). Utilization of Tofu Dregs Waste as a Value Added Product in Pondokrejo Village, Jember. TGO Journal of Community Development, 2(2), 82-87.
  9. Bahri, S., Hadati, K. S., & Satrimafitrah, P. (2021). Production of protein hydrolysate from tofu dregs using the crude extract of bromelain from pineapple core (Ananas comosus l). In Journal of Physics: Conference Series (Vol. 1763, No. 1, p. 012008). IOP Publishing.
  10. Nur Tasya, Febriyanti. (2023). Perancangan Sistem Monitoring Kebisingan Secara Realtime Berbasis Website Dalam Lingkungan Kerja Sebagai Pendukung Data Kesehatan Dan Keselamatan Kerja (K3).
  11. Khrystoslavenko, O., & Grubliauskas, R. (2022). Investigation of acoustic efficiency of wood charcoal in impedance tube for usage in sound-reflective devices. Sustainability, 14(15), 9431.
  12. Shahrin, F. (2014). Penggunaan Casing Sebagai Peredam Suara Pada Mesin Diesel. In Prosiding Seminar Hasil Penelitian Semester Ganjil 2013/2014 (No. 1, pp. 309-318). Unsada.
  13. Lim, Z. Y., Putra, A., Nor, M. J. M., & Yaakob, M. Y. (2018). Sound absorption performance of natural kenaf fibres. Applied Acoustics, 130, 107-114.
  14. Taban, E., Soltani, P., Berardi, U., Putra, A., Mousavi, S. M., Faridan, M., ... & Khavanin, A. (2020). Measurement, modeling, and optimization of sound absorption performance of Kenaf fibers for building applications. Building and Environment, 180, 107087.
  15. Khrystoslavenko, O., & Grubliauskas, R. (2022). Investigation of acoustic efficiency of wood charcoal in impedance tube for usage in sound-reflective devices. Sustainability, 14(15), 9431.
  16. Khrystoslavenko, O., Astrauskas, T., & Grubliauskas, R. (2023). Sound absorption properties of charcoal made from wood waste. Sustainability, 15(10), 8196.
  17. Zhao, J., Wang, X. M., Chang, J. M., Yao, Y., & Cui, Q. (2010). Sound insulation property of wood–waste tire rubber composite. Composites Science and Technology, 70(14), 2033-2038.
  18. Chen, Y., Li, D., & Xu, D. (2019, February). Research on Application of Acoustic Materials in Automobile Noise Reduction. In IOP Conference Series: Earth and Environmental Science (Vol. 233, No. 5, p. 052026). IOP Publishing.
  19. Peças, P., Carvalho, H., Salman, H., & Leite, M. (2018). Natural fibre composites and their applications: a review. Journal of composites science, 2(4), 66.
  20. Sharma, S., Sudhakara, P., Singh, J., Singh, S., & Singh, G. (2023). Emerging progressive developments in the fibrous composites for acoustic applications. Journal of Manufacturing Processes, 102, 443-477.
  21. Mamtaz, H., Fouladi, M. H., Al-Atabi, M., & Narayana Namasivayam, S. (2016). Acoustic absorption of natural fiber composites. Journal of Engineering, 2016(1), 5836107.
  22. Hassan, T., Jamshaid, H., Mishra, R., Khan, M. Q., Petru, M., Tichy, M., & Muller, M. (2021). Factors affecting acoustic properties of natural-fiber-based materials and composites: a review. Textiles, 1(1), 55-85.
  23. Rastegar, N., Ershad-Langroudi, A., Parsimehr, H., & Moradi, G. (2022). Sound-absorbing porous materials: a review on polyurethane-based foams. Iranian Polymer Journal, 1-23.
  24. Allard, J., & Atalla, N. (2009). Propagation of sound in porous media: modelling sound absorbing materials. John Wiley & Sons.
  25. Kalauni, K., & Pawar, S. J. (2019). A review on the taxonomy, factors associated with sound absorption and theoretical modeling of porous sound absorbing materials. Journal of Porous Materials, 26(6), 1795-1819.
  26. Duru’Sarungallo, I., & Aprelita, E. S. (2019). Paper review: Analisis karateristik sifat fisis serat alam sebagai material akustik. Fisika. Ukitoraja. Ac. Id.
  27. Gokulkumar, S., Thyla, P. R., Prabhu, L., & Sathish, S. (2020). Measuring methods of acoustic properties and influence of physical parameters on natural fibers: A review. Journal of Natural Fibers.
  28. Dev, B., Rahman, M. A., Repon, M. R., Rahman, M. M., Haji, A., & Nawab, Y. (2023). Recent progress in thermal and acoustic properties of natural fiber reinforced polymer composites: preparation, characterization, and data analysis. Polymer Composites, 44(11), 7235-7297.
  29. Samsudin, E. M., Ismail, L. H., Abd Kadir, A., Nasidi, I. N., & Samsudin, N. S. (2018). Rating of sound absorption for EFBMF acoustic panels according to ISO 11654: 1997. In MATEC Web of Conferences (Vol. 150, p. 03002). EDP Sciences.
  30. Hannan, N. I. R. R., Shahidan, S., Ali, N., Bunnori, N. M., Zuki, S. S. M., & Ibrahim, M. H. W. (2020). Acoustic and non-acoustic performance of coal bottom ash concrete as sound absorber for wall concrete. Case Studies in Construction Materials, 13, e00399.