Main Article Content

Abstract

This study explores key aspects of cosmology, starting with the foundational FLRW equations that describe the universe's evolution, emphasizing its homogeneity and isotropy. We incorporate mass viscosity into these equations, shedding light on its role in shaping the universe. Observations of Type Ia supernovae inform our understanding of cosmological parameters, including the Hubble rate and dark energy's effects on cosmic expansion. Cosmic Microwave Background fluctuations are analyzed for insights into cosmic structure. Baryon Acoustic Oscillations provide additional data for estimating critical parameters. We also examine the Hubble Parameter to understand its relation to cosmological parameters. Lastly, we introduce statefinder analysis, unveiling the universe's behavior through key indicators like "r" and "s." This study offers comprehensive insights into cosmology and the universe's evolution.

Keywords

FLRW equation, Cosmological parameters, Cosmic microwave background, Baryon acoustic oscillations, Hubble constant

Article Details

How to Cite
1.
Nasution B, Ritonga W, Siagian RC, Harahap V, Alfaris L, Muhammad AC, Laeiq N. Exploring Cosmological Dynamics: From FLRW Universe to Cosmic Microwave Background Fluctuations. EKSAKTA [Internet]. 2023Dec.30 [cited 2024Dec.3];23(04):500-12. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/427

References

  1. Nishimichi, T., D’Amico, G., Ivanov, M. M., Senatore, L., Simonović, M., Takada, M., ... & Zhang, P. (2020). Blinded challenge for precision cosmology with large-scale structure: results from effective field theory for the redshift-space galaxy power spectrum. Physical Review D, 102(12), 123541.
  2. Sinaga, G. H. D., Panjaitan, M. B., Siagian, R. C., & Siahaan, K. W. A. Memahami Indahnya Semesta Dengan Dasar Teori Kosmologi Dan Astronomi Fisika Serta Sejarahnya. Penerbit Widina.
  3. Planet, B. A. (2022). Pendahuluan. ILMU DASAR ASTRONOMI, 70.
  4. Alfaris, L., Siagian, R. C., & Sumarto, E. P. (2023). Study Review of the Speed of Light in Space-Time for STEM Student. Jurnal Penelitian Pendidikan IPA, 9(2), 509-519.
  5. Melia, F. (2019). The lapse function in Friedmann—Lemaître–Robertson–Walker cosmologies. Annals of Physics, 411, 167997.
  6. Konstantinov, S. I. (2021). Quantum Theory of Gravity and Arthur Eddington's Fundamental Theory. Journal ISSN, 2766, 2276.
  7. Siagian, R. C., Alfaris, L., Nurahman, A., & Sumarto, E. P. (2023). Termodinamika Lubang Hitam: Hukum Pertama Dan Kedua Serta Persamaan Entropi. Jurnal Kumparan Fisika, 6(1), 1-10.
  8. Siagian, R. C., Alfaris, L., Muhammad, A. C., Nyuswantoro, U. I., & Rancak, G. T. (2023). The Orbital Properties of Black Holes: Exploring the Relationship between Orbital Velocity and Distance. Journal of Physics and Its Applications, 5(2), 35-42.
  9. Nasution, B., Ritonga, W., Siagian, R. C., Alfaris, L., Muhammad, A. C., Nyuswantoro, U. I., & Rancak, G. T. (2023). Physics Visualization of Schwarzschild Black Hole through Graphic Representation of the Regge-Wheeler Equation using R-Studio Approach. Sainmatika: Jurnal Ilmiah Matematika dan Ilmu Pengetahuan Alam, 20(1), 8-24.
  10. Mollah, M. R., Singh, K. P., Meitei, A. J., Singh, P. R., Yadav, A. K., & Devi, S. R. (2023). Mathematical Models and Methods on Higher Dimensional Bulk Viscous String Cosmology with the Framework of Lyra Geometry. Ukrainian Journal of Physics, 68(7), 437-437.
  11. Gómez, G., Palma, G., González, E., Rincón, Á., & Cruz, N. (2023). A new parametrization for bulk viscosity cosmology as extension of the CDM model. The European Physical Journal Plus, 138(8), 738.
  12. Anselmi, S., Carney, M. F., Giblin, J. T., Kumar, S., Mertens, J. B., O'Dwyer, M., ... & Tian, C. (2023). What is flat ΛCDM, and may we choose it?. Journal of Cosmology and Astroparticle Physics, 2023(02), 049.
  13. Siagian, R. C., Alfaris, L., & Sinaga, G. H. D. (2023, April). Review for Understanding Dark Matter in The Universe as Negative Energy. In Proceeding International Conference on Religion, Science and Education (Vol. 2, pp. 679-685).
  14. Nasution, B., Siagian, R. C., Ritonga, W., Alfaris, L., Muhammad, A. C., & Nurahman, A. (2023). A Monte Carlo Density Distribution Model Study to Analyze Galaxy Structure, Mass Distribution, and Dark Matter Phenomena. Indonesian Review of Physics, 6(1), 24-45.
  15. Siagian, R. C. Filsafat Fisika dalam konteks Teori Relativitas. philosophy, 1, 20.
  16. Nasution, B., Siagian, R. C., Ritonga, W., Alfaris, L., Muhammad, A. C., & Nurahman, A. (2023). Investigating the Density Distribution of Dark Matter in Galaxies: Monte Carlo Analysis and Model Comparison. Indonesian Review of Physics (IRiP), 6(1).
  17. Siagian, R. C., Pribadi, P., Sinaga, G. H. D., Nurahman, A., & Nasution, B. (2023). Statistical Data Retrieval Technique in Astronomy Computational Physics. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 10(1).
  18. Aluri, P. K., Cea, P., Chingangbam, P., Chu, M. C., Clowes, R. G., Hutsemékers, D., ... & Zhao, W. (2023). Is the observable Universe consistent with the cosmological principle?. Classical and Quantum Gravity, 40(9), 094001.
  19. Waugh, S. Shape and size of our universe: challenging the Standard Model of Cosmology.
  20. Siagian, R. C., Alfaris, L., Nurahman, A., Muhammad, A. C., Nyuswantoro, U. I., & Nasution, B. (2023). Separation of Variables Method in Solving Partial Differential Equations and Investigating the Relationship between Gravitational Field Tensor and Energy-Momentum Tensor in Einstein's Theory of Gravity. Kappa Journal, 7(2), 343-351.
  21. MISBAH, M. Teori Relativitas.
  22. Tiwari, R. K., Sofuoğlu, D., & Dubey, V. K. (2020). Phase transition of LRS Bianchi type-I cosmological model in f (R, T) gravity. International Journal of Geometric Methods in Modern Physics, 17(12), 2050187.
  23. Celora, T., Hawke, I., Hammond, P. C., Andersson, N., & Comer, G. L. (2022). Formulating bulk viscosity for neutron star simulations. Physical Review D, 105(10), 103016.
  24. Misbah, M. (2022). Persamaan Differensial Matematika Fisika.
  25. Nasution, B., Alfaris, L., & Siagian, R. C. (2023). Basic Mechanics of Lagrange and Hamilton as Reference for STEM Students. Jurnal Penelitian Pendidikan IPA, 9(2), 898-905.
  26. Porat, I. B. (2023). Derivation of euler’s equations of perfect fluids from von neumann’s equation with magnetic field. Journal of Statistical Physics, 190(7), 121.
  27. Singh, T. A., Singh, K. P., Baro, J., & Daimary, M. (2022). Observation on the Role of Bulk Viscosity in Present Scenario of the Evolution in FRW Model Universe. Dates, 1, 1-11.
  28. Nasution, B., Siagian, R. C., Nurahman, A., & Alfaris, L. (2023). Exploring The Interconnectedness of Cosmological Parameters and Observations: Insights into The Properties And Evolution of The Universe. Spektra: Jurnal Fisika dan Aplikasinya, 8(1).
  29. Hohmann, M., Pfeifer, C., & Voicu, N. (2020). Cosmological Finsler Spacetimes. Universe, 6(5), 65.
  30. Secrest, N. J., von Hausegger, S., Rameez, M., Mohayaee, R., & Sarkar, S. (2022). A challenge to the standard cosmological model. The Astrophysical journal letters, 937(2), L31.
  31. Fernández, A. (2023). Querying Artificial Intelligence on the Dark Universe in a Quintessential Encoding of Space-time. Cambridge Scholars Publishing.
  32. Siagian, R. C., Alfaris, L., Muhammad, A. C., Mamou, A. E., Rancak, G. T., Nyuswantoroe, U. I., ... & Sumarto, E. P. Pengantar Matematika Geometri Lubang Hitam. wawasan Ilmu.
  33. Abbott, T. M. C., Aguena, M., Allam, S., Amon, A., Andrade-Oliveira, F., Asorey, J., ... & DES Collaboration. (2022). Dark Energy Survey Year 3 results: A 2.7% measurement of baryon acoustic oscillation distance scale at redshift 0.835. Physical Review D, 105(4), 043512
  34. Lemos, P., & Shah, P. (2023). The Cosmic Microwave Background and $ H_0$. arXiv preprint arXiv:2307.13083.