Main Article Content

Abstract

Foreign invaders in the form of bacteria, fungi, or viruses can cause various diseases if they enter the body, both molecularly and cellularly. Hence, the body needs a compound that can maintain and enhance the immune and immune systems to recognize abnormal cells that can become a source of disease for the body. Improving immunity/resistance for people with diseases is very important so that people undergoing treatment are given immunostimulant drugs or pharmaceutical preparations. This study aimed to determine the protein network associated with the body's immune system, which was activated by the administration of citronella (Cymbopogon nardus). The research method used is explorative descriptive with in silico analysis using a computational model with software including KNApSAck, Dr. Duke, Pubchem, Swiss ADME, Swiss Target Prediction, Gene Cards, Venny, STRING, and KEGG. Based on the results of pharmacological network analysis, C. nardus contains 40 secondary metabolites, 25 of them have high bioavailability. Based on pharmacological network analysis, (-)-menthol is an important compound that plays a role in the immune system because it is expected to interact with three crucial pathways related to immunomodulators.

Keywords

in silico network pharmacology immunomodulator citronella grass Cymbopogon nardus

Article Details

How to Cite
1.
Veda AIH, Muchlisin MA, Jamil AS, Almutahrihan IF, Satriawan H. In Silico Study Potential Secondary Metabolite Candidate of Citronella Grass (Cymbopogon nardus) on Immunity Cases. EKSAKTA [Internet]. 2023Sep.30 [cited 2024May13];23(03):465-7. Available from: https://eksakta.ppj.unp.ac.id/index.php/eksakta/article/view/418

References

  1. Johns Hopkins University. (2023). COVID-19 Dashboard by the Center for Systems Sci-ence and Engineering (CSSE) at Johns Hopkins University (JHU). Retrieved From https://gisanddata.maps.arcgis.com/apps/dashboards/bda7594740fd40299423467b48e9ecf6.
  2. Bhayana, V., Thakor. P., Singh, S. B., & Mehra, N. K. (2020). COVID-19: Pathophysiolo-gy, treatment options, nanotechnology approaches, and research agenda to combating the SARS-CoV2 pandemic. Life Sciences, 261(118336), 1-17.
  3. Priyani, S. E. (2021). Kajian Beberapa Bahan Alam Berbasis Thibbun-Nabawi yang Mem-iliki Aktivitas Peningkatan Imunitas. Jurnal Ilmiah Farmasi, 17(1), 46-55.
  4. Perdana, P. G. R. W. (2021). Review Artikel : Aktivitas Imunomodulator Ekstrak Herba Meniran (Phyllanthus niruri L.). Jurnal Farmasi Mahalayati, 4(1), 44-52.
  5. Prakoeswa, F. R. (2020). Peranan Sel Limfosit Dalam Imunulogi: Artikel Review. Jurnal Sains dan Kesehatan, 2(4), 525-537.
  6. Setiyowati, P. A. I., Solekha, R., Sahara, S. B., & Rosalina, R. R. (2021). Immunomodula-tor Effect of Lemongrass Extract (Cymbopogon nardus L.) to Increase Immune Cells as a Precaution Against SARS-CoV-2. Biomolecular and Health Science Journal, 4(2), 73-77.
  7. Ernis, G., Notriawan, D., Fitriani, D., Yunita, E., & Cantika, I. (2021). Uji In Vitro Aktivi-tas Imunomodulator Minyak Atsiri Serai Dapur (Cymbopogon citratus) Terhadap Prolifer-asi Sel Lim-fosit Mencit. BIOEDUSAINS: Jurnal Pendidikan Biologi dan Sains, 4(2), 129-135.
  8. Feuillet, V., Canard, B., & Trautmann, A. (2021). Combining Antivirals and Immunomodu-lators to Fight COVID-19. Trends in Immunology, 42(1), 31-44.
  9. Gallagher, J. C., & Morgan, R. L. (2023). Successful immunomodulators for the treatment of COVID-19 have opened the pathway for comparative trials. Clinical Microbiology and In-fection, 29(1), 7-9.
  10. Liskova, A., Samec, M., Koklesova, L., Samuel, S. M., Zhai, K., Al-Ishaq, R. K., ... & Kubatka, P. (2021). Flavonoids against the SARS-CoV-2 induced inflammatory storm. Bio-medicine & Pharmacotherapy, 138(11430), 1-12.
  11. Istyastono, E. P. (2020). Rancangan Obat dan Penapisan Virtual Berbasis Struktur. Yogyakarta: Sanata Dharma University Press.
  12. Bare, Y., Maulidi, A., Sari, D. R. T., & Tiring, S. S. N. D. (2019). Studi in Silico Prediksi Potensi 6-Gingerol sebagai inhibitor c-Jun N-terminal kinases (JNK): Prediction Potential of 6-gingerol as c-Jun N-terminal kinases (JNK): In Silico approach. Jurnal Jejaring Matematika dan Sains, 1(2), 59-63.
  13. Zhenga, S., Baakb, J. P., Lia, S., Xiaoa, W., Rena, H., Yanga, H., ... & Wen, C. (2020). Network pharmacology analysis of the therapeutic mechanisms of the traditional Chinese herbal formula Lian Hua Qing Wen in Corona virus disease 2019 (COVID-19), gives fun-damental support to the clinical use of LHQW. Phytomedicine, 79(153336), 1-12.
  14. Zhang, R., Zhu, X., Bai, H., & Ning, K., (2019). Network pharmacology databases for traditional chinese medicine: review and assessment. Frontiers in Pharmacology, 10, 123.
  15. Afendi, F. M., Okada, T., Yamazaki, M., Hirai-Morita, A., Nakamura, Y., Nakamura, K., Ikeda, S., Takahashi, H., Altaf-Ul-Amin, M., Latifah., Darusman., Saito, K., Kanaya, S. (2012). KNApSAcK Family Databases: Integrated Metabolite-Plant Species Databases for Multifaceted Plant Research. Plant and Cell Physiology, 53(2), e1(1-12).
  16. U.S. Department of Agriculture, Agricultural Research Service. (1992-2016). Dr. Duke's Phytochem-ical and Ethnobotanical Databases [ONLINE]. Available from: https://phytochem.nal.usda.gov/.
  17. Daina, A., Michielin, O., Zoete, V. (2017). SwissADME: a free web tool to evaluate phar-maco-kinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scien-tific reports, 7(1), 42717.
  18. Daina, A., Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain pene-tration of small molecules. ChemMedChem, 11(11), 1117-1121.
  19. Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: updated data and new features for efficient prediction of protein targets of small molecules. Nucleic acids research, 47(W1), W357-W364.
  20. Stelzer, G., Rosen, N., Plaschkes, I., Zimmerman, S., Twik, M., Fishilevich, S., Stein, T. I., Nudel, R., Lieder, I., Mazor, Y., Kaplan, S., Dahary, D., Warshawsky, D., Guan-Golan, Y., Kohn, A., Rappaport, N., Safran, M., Lancet, D. (2016). The GeneCards suite: from gene data mining to disease genome sequence analyses. Current Protocols in Bioinformatics, 54(1), 1-30.
  21. Oliveros, J. C. (2015). Venny. An interactive tool for comparing lists with Venn's diagrams [ONLINE]. Available from: https://bioinfogp.cnb.csic.es/tools/venny/index.html.
  22. Szklarczyk, D., Gable, A. L., Nastou, K. C., Lyon, D., Kirsch, R., Pyysalo, S., Doncheva, N. T., Legeay, M., Fang, T., Bork, P., Jensen, L. J., von Mering, C. (2021). The STRING database in 2021: customizable protein–protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Research, 49(D1), D605-D612.
  23. Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M., & Ishiguro-Watanabe, M. (2023). KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Research, 51(D1), D587-D592.
  24. Nguyen-Vo, T. H., Nguyen, L., Do, N., Nguyen, T. N., Trinh, K., Cao, H., & Le, L. (2019). Plant metabolite databases: from herbal medicines to modern drug discovery. Journal of chemical information and modeling, 60(3), 1101-1110.
  25. Kusuma, S. M. W., Utomo, D. H., & Susanti. R. (2022). Molecular Mechanism of Inhibi-tion of Cell Proliferation: An In Silico Study of the Active Compounds in Curcuma longaas an Anticancer. Journal of Tropical Biodiversity and Biotechnology, 7(3), 1-16.
  26. Anand, T. & Gokulakrishnan, K., (2014). GC-MS Analysis and Anti-Microbal Activity of Bioactive Components of Hybanthus enneaspermus. International Journal of Pharmacy and Pharmaceutical Science, 2(3), 646-650.
  27. Labibah, L., & Rusdiana, T. (2022). Hubungan Jenis Kelamin terhadap Eksipien Farmasi dalam Mempengaruhi Bioavailabilitas Obat. Majalah Farmasetika, 7(3), 176-188.
  28. Panova, E. V., Voronina, J. K., & Safin, D. A. (2023). Copper(II) Chelates of Schiff Bases Enriched with Aliphatic Fragments: Synthesis, Crystal Structure, In Silico Studies of AD-MET Properties and a Potency against a Series of SARS-CoV-2 Proteins. Pharmaceuticals, 16(2), 286.
  29. García-Beltrán, O., Urrutia, P. J., & Núñez, M. T. (2023). On the Chemical and Biological Characteristics of Multifunctional Compounds for the Treatment of Parkinson’s Disease. Antioxidants, 12(2), 214.
  30. Naveed, M., Shabbir, M. A., Ain, N. U., Javed, K., Mahmood, S., Aziz, T., ... & Alsham-mari, A. (2023). Chain-Engineering-Based De Novo Drug Design against MPXVgp169 Viru-lent Protein of Monkeypox Virus: A Molecular Modification Approach. Bioengineering, 10(1), 11.
  31. Feng, Z., Lu, X., Gan, L., Zhang, Q., & Lin, L. (2020). Xanthones, a promising anti-inflammatory scaffold: Structure, activity, and drug likeness analysis. Molecules, 25(3), 598.
  32. Lawal, B., Liu, Y. L., Mokgautsi, N., Khedkar, H., Sumitra, M. R., Wu, A. T., & Huang, H. S. (2021). Pharmacoinformatics and preclinical studies of nsc765690 and nsc765599, po-tential stat3/cdk2/4/6 inhibitors with antitumor activities against nci60 human tumor cell lines. Biomedicines, 9(01), 92.
  33. Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., ... & Lancet, D. (2021). The genecards suite. in Abugessaisa, I., Kasukawa, T. (eds.). Practical Guide to Life Science Databases. Springer, Singapore.
  34. Grabowski, P., & Rappsilber, J. (2019). A primer on data analytics in functional genomics: how to move from data to insight?. Trends in biochemical sciences, 44(1), 21-32.
  35. Jung, J. H., Hwang, J., Kim, J. H., Sim, D. Y., Im, E., Park, J. E., ... & Kim, S. H. (2021). Phyotochemical candidates repurposing for cancer therapy and their molecular mechanisms. Seminars in Cancer Biology, 68(2021), 164-174.
  36. Hehenberger, M. (2020). IT Supporting Biomarker‐Enabled Drug Development. in Rahba-ri, R., Van Niewaal, J., & Bleavins, M. R. (Eds.). Drug Discovery and Development: A Hand-book of Practice, Application, and Strategy, Second edition. John Wiley & Sons, New Jersey.
  37. Rozza, A. L., Beserra, F. P., Vieira, A. J., Oliveira de Souza, E., Hussni, C. A., Martinez, E. R. M., ... & Pellizzon, C. H. (2021). The use of menthol in skin wound healing—Anti-inflammatory potential, antioxidant defense system stimulation and increased epithelializa-tion. Pharmaceutics, 13(11), 1902.
  38. Bajagai, Y. S., Petranyi, F., Horyanto, D., Batacan Jr, R., Lobo, E., Ren, X., ... & Stanley, D. (2022). Ileum transcriptional response to prolonged supplementation with phytogenic product containing menthol, carvacrol and carvone. Heliyon, 8(3), e09131.